

EDUCATION

SEKHUKHUNE SOUTH AND EAST DISTRICT

GRADE 11
MATHEMATICS
TEST 1
10 MARCH 2020

MARKS: 100

DURATION: 2 HOURS

INSTRUCTIONS:

- 1. This question paper consists of 5 questions, answer all of them.
- 2. Diagrams are not necessarily drawn to scale.
- 3. Number your answers exactly as the questions are numbered.
- 4. Write neatly and legibly.

1.1 Solve for x in each of the following:

$$1.1.1 \quad 2x(x-3) = 0 \tag{2}$$

1.1.2
$$3x^2 - 2x = 4$$
 (correct to TWO decimal places) (5)

1.1.3
$$(x-1)(4-x) \ge 0$$
 (4)

$$1.1.4 \quad \sqrt{x+5} = x-1 \tag{5}$$

- 1.2. Solve for x and y simultaneously if: (6)
- $x + 4 = 2y \text{ and } y^2 xy + 21 = 0$ 1.3 Discuss the nature of the roots of the equation $2(x 3)^2 + 2 = 0$ (4)
- 1.4 Determine the value(s) of p if $g(x) = -2x^2 px + 3$ has a maximum value of $3\frac{1}{8}$.

[30]

QUESTION 2

- 2.1 Simplify fully, WITHOUT using a calculator: $\frac{3^{2x+1} \cdot 15^{2x-3}}{27^{x-1} \cdot 3^x \cdot 5^{2x-4}}$ (4)
- 2.2 Solve for x

$$2.2.1 \qquad (\frac{1}{2})^x = 32 \tag{3}$$

$$2.2.2 2^x - 5.2^{x+1} = -144 (3)$$

$$2.2.3 2 - 16x^{-\frac{3}{2}} = 0 (3)$$

$$2.2.4 \sqrt[x]{9} = 243 (3)$$

[16]

QUESTION 3

- 3.1 Complete: The line drawn from the centre of the circle perpendicular to the chord
- 3.2 The figure below, AB and CD are chords of the circle with centre O. OE\(\pext{AB}\). CF=FD. OE=4cm, OF=3cm and CD=8cm.

3.2.1 Calculate the length of OD.

(3)

(4)

3.2.2 Hence calculate the length of AB.

[9]

In the diagram below, points A, B, C and D lie on the circumference of a circle. FG and FD are tangents to the circle at C and D respectively. CD is produced to meet AE at E. Furthermore, \angle GCA= 78° , \angle CBD = 41° and \angle BDA = 34°

- 4.1.1 Write down, with reasons, THREE other angles that are each equal to 41^{0}
- 4.1.2 Determine with reasons the sizes of the following angles:

(a)
$$\hat{D}_2$$
 (3)

(b)
$$\hat{B}_2$$
 (3)

(c)
$$\hat{D}_4$$

$$\begin{array}{ccc}
\text{(3)} \\
\text{(2)}
\end{array}$$

- 4.1.3 Determine, with reasons, whether *CADF* is a cyclic quadrilateral or not (3)
- 4.2 In the diagram below, A is the centre of the circle and BCDE is a cyclic quadrilateral. Prove the theorem that states that $\angle B + \angle D = 180^{\circ}$

5.1 In the figure, BCDE is a cyclic quadrilateral. BC//ED in the circle with centre A. BE and CD produced meet at F. $\angle D_3 = x$,

- 5.1.1 Show that FE=FD (4)
- 5.1.2 If $\angle D_3 = x$, determine the value of $\angle F$, in terms of x. (2)
- 5.1.3 Hence, show that BADF is a cyclic quadrilateral (4)
- 5.2 B is the centre of the larger circle CEFG. BC is the diameter of the smaller circle CDB. HC is a tangent to both circles at C. GH \perp , $\angle C_1 = x$.

Downloaded from Stanmorephysics.com

5.2.1 Prove that CG bisects $\angle BGH$. (5)

5.2.2 Prove that $\angle GBD = \angle CEF$. (5)

[25]

LIMPOPO

PROVINCIAL GOVERNMENT

REPUBLIC OF SOUTH AFRICA

DEPARTMENT OF

EDUCATION

SEKHUKHUNE SOUTH AND EAST DISTRICTS

GRADE 11

MATHEMATICS
TEST 1
TERM 1
10 MARCH 2020
MEMORANDUM

Marks: 100 Marks: 2 Hour

1.1	1.1.1 2x(x-3)		
	2x = 0 or x - 3 = 0	x = 0	
	$x = 0 \checkmark 0r \ x = 3 \checkmark$	$x = 3\checkmark$	(2)
	$1.1.2 \ 3x^2 - 2x = 4$		
	$3x^2 - 2x - 4 = 0 \checkmark$	Standard form✓	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$-(-2)\pm\sqrt{(-2)^2-4(3)(-4)}$	Substitution✓	
	$\chi = \frac{1}{2(3)} \checkmark$	Substitution	
	$x = \frac{\frac{2a}{-(-2)\pm\sqrt{(-2)^2-4(3)(-4)}}}{\frac{2(3)}{2(3)}} $ $x = \frac{2\pm\sqrt{48}}{6} \checkmark$	simplification√	
	$x = 1.49 \checkmark or = -0.82 \checkmark$	answer✓✓	(5)
	$1.1.3 (x-1)(4-x) \ge 0$		
	6		
	5		
	4		
	3		
	2		
	-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9		
	-1 /		
	-2		
	-3		
	/		
	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cuiti and analysis (
	-\$	Critical value \checkmark \checkmark $1 \le x \le 4 \checkmark \checkmark$	(4)
		$1 \leq x \leq 4$	(4)
	f		
	$1.1.4 \ \sqrt{x+5} = x-1$		
	$(\sqrt{x+5})^2 = (x-1)^2$	Squaring both sides✓	
	$x + 5 = x^2 - 2x + 1$		
	$x^2 - 3x - 4 = 0 \checkmark$	Standard form✓	
	$(x-4)(x+1)=0 \checkmark$	Factorization <	
	$\therefore x = 4 \checkmark \text{ or } x = -1 \checkmark$	both solutions ✓ ✓	,
	$x \neq 4$	rejecting $x = -4\checkmark$	(6)

		T
1.2	$x + 4 = 2y \qquad \cdots (1)$	
	$y^2 - xy + 21 = 0$ (2)	
	$x = 2y - 4 \qquad \cdots (3) \checkmark \therefore y^2 - y(2y - 4) + 21 = 0 \checkmark$	$x = 2y - 4\checkmark$
	$y^2 - y(2y - 4) + 21 = 0 \checkmark$	substitution✓
	$\therefore y^2 - 2y^2 + 4y + 21 = 0$	
	$\therefore -y^2 + 4y + 21 = 0$	
	$\therefore y^2 - 4y - 21 = 0 \checkmark$	standard form✓
	$\therefore (y+3)(y-7) = 0 \checkmark$	factors
	$\therefore y = -3 \text{ or } y = 7 \checkmark$	y-values √
	$\therefore x = 2(-3) - 4 \text{ or } x = 2(7) - 4$	
	$\therefore x = -10 \text{ or } x = 10 \checkmark$	x-values ✓ (6)
1.3	$2(x-3)^2 + 2 = 0$	
	$2(x^2 - 6x + 9) + 2 = 0$	
	$2x^2 - 12x + 20 = 0\checkmark$	Standard form✓
	$\Delta = b^2 - 4ac$	
	$= (-12)^2 - 4(2)(20)\checkmark$	substitution✓
	= 144 - 160	-16√
	$=-16 \checkmark$	conclusion ✓ (4)
1.4	∴ roots are non real/imaginary \checkmark $g(x) = 2x^2 - px + 3$	conclusion (4)
1.4		$x = \frac{-p}{4}$
	$x = \frac{-b}{2a} = \frac{-(-p)}{2(-2)} = \frac{-p}{4} \checkmark$	$x - \frac{1}{4}$
	$y = -2\left(\frac{-p}{4}\right)^2 - p\left(\frac{-p}{4}\right) + 3\checkmark$	Substitution✓
	$-2\left(\frac{-p}{4}\right)^2 - p\left(\frac{-p}{4}\right) + 3 = 3\frac{1}{8}$	Sucstitution
	$-\frac{p^2}{8} + \frac{2p^2}{8} = \frac{1}{8} \checkmark$ $p^2 = 1$	Simplification✓
	$n^{8} = 1$	
	$p = \pm 1 \checkmark$	
	· -	P = ±1✓
	OR	
	$4ac-b^2$	
	$\text{Max value} = \frac{4ac - b^2}{4a} \checkmark$	
	$\frac{4(-2)(3)-p^2}{4(-2)(3)} = \frac{25}{3}$	
	$\begin{vmatrix} 4(-2) & 8 \\ -24-p^2 & 25 \end{vmatrix}$	
	$\frac{1}{1-8} = \frac{1}{8}$	
	$-192 - 8p^2 = -200\checkmark$	
	$\frac{4(-2)(3)-p^2}{4(-2)} = \frac{25}{8}$ $\frac{-24-p^2}{-8} = \frac{25}{8}$ $-192 - 8p^2 = -200\checkmark$ $8p^2 = 8$	
	$p=\pm 1\checkmark$	(4)
QUEST	ΓΙΟΝ 2	I
2.1	$3^{2x+1}.15^{2x-3}$	
	$27^{x-1}.3^{x}.5^{2x-4}$	
	$3^{2x+1} \cdot 3^{2x-3} \cdot 5^{2x-3}$	Prime bases ✓ ✓
	$=\frac{3^{2x+1} \cdot 3^{2x-3} \cdot 5^{2x-3}}{3^{3x-3} \cdot 3^{2x-2}} \checkmark \checkmark$	

		Simplification✓	
	$=3^{2x+1+2x-3-3x+3-x}.5^{2x-3-2x+4} \checkmark$		
	= 3.5		
	= 3.5 = 15 ✓	Answer√	(4)
			(.)
2.2	$2.2.1 \ (\frac{1}{2})^x = 32$		
	$2^{-x} = 2^5$	Same base ✓	
	$-x = 5$ \checkmark	Equating indice answer	(3)
	$\therefore x = -5 \checkmark$ 2.2.2 $2^x - 5 \cdot 2^{x+1} = -144$	answer	(3)
		Common footon	
	$2^{x}(1-5.2) = -144 \qquad \checkmark$ $2^{x}(-9) = -144$	Common factor√	
	$2^{x} = 16$		
	$2^x = 2^4 \checkmark$	Same base✓	
	x = 4	Answer ✓	(3)
	$2.2.3 \ 2 \cdot 16x^{-\frac{3}{2}} = 0$		
	$-16x^{-\frac{3}{2}} = -2$		
	$x^{-\frac{3}{2}} = \frac{1}{8}$	Isolating x✓	
	8 -3×-2	Raising both sides by $\frac{-2}{3}$	
	$x = 2^{-3 \times \frac{-2}{3}} \checkmark$	answer√	(3)
	$x = 4 \checkmark$ 2.2.4 $\sqrt[x]{9} = 243$		
		Exponential form✓	
	$(\sqrt{9}) = (243)^{x}$ $9 = 3^{5x} \checkmark$		
	$3^2 = 3^{5x}$		
	$2=5x\checkmark$	Equating the exponents •	
	$x=\frac{2}{5}$	Answer ✓	(3)
	5		(-)
	QUESTION 3		
3.1	Bisects the chord ✓	✓ Answer	(1)
3.2	3.2. 1 OF ⊥ DC (line drawn from centre to the mid-point)		
3.2	$OD^2 = OF^2 + FD^2 \checkmark$	✓ Pythagoras	
	$=3^2+4^2\checkmark$	✓Method	
	= 25	✓ answer	(3)
	∴OD = 5 ✓		
	$3.2.2 \text{ AO} = \text{OD} = 5\checkmark \text{ (radii)}$	√ 5	
	$AE^2 = AO^2 - OE^2 \qquad \text{(Pythagoras)} \checkmark$		
	$=5^2-4^2$	✓Pythagoas	
	= 9	() 77 ()	
	$AB = 3\checkmark$	\checkmark AE = 3	(4)
	$AB = 9 \checkmark \text{ (line drawn from the centre } \bot \text{ to the chord)}$	\checkmark AB = 9	(4)
		1	

	QUESTION 4	
4.1.1	$A_2 = B_1 = 41^0 \checkmark \text{ (< in the same segment)} \checkmark$	S ✓ and R✓
	$ \overset{\circ}{C_4} = \overset{\circ}{B_1} = 41^0 \checkmark \text{(tan-chord theorem)} \qquad \checkmark $	S✓ and R✓
	$D_1 = C_4 = 41^0 \checkmark (< s \text{ opp} = \text{sides}) \checkmark$ OR	S✓ and R✓ (6)
4.1.0	$D_1 = A_2 = 41$ (tan-chord theorem)	
4.1.2	(a) $D_2 + 34^0 = 78^0 \checkmark$ (tan-chord theorem)	✓S and R
	$\therefore \stackrel{\smallfrown}{D_2} = 44^0 \checkmark$	✓Answer (2)
	(b) $41^{\circ} + B_2 + 44^{\circ} + 34^{\circ} = 180^{\circ} \checkmark$ (opp < s of a cyclic quad)	✓ S and R
	$\therefore \stackrel{\circ}{B_2} = 61^{\circ}\checkmark$	✓Answer (2)
	$(c)^{D_4} = 41^0 + 61^0 $ (ext. < s of a cyclic quard) $\therefore D_4 = 102^0$	✓S and R ✓Answer (2)
	OR	✓S and R
	$D_4 = 102^{0} \checkmark$ (d) $F + 41^{0} + 41^{0} = 180^{0}$ (int. $< s$ of a Δ) \checkmark	✓ Answer ✓ S and R
	$\hat{F} = 98^{0} \checkmark$	✓Answer (2)
4.1.3	$A + F = 40^{\circ} + 98^{\circ} \checkmark$ $= 138^{\circ} \checkmark$ $\neq 180^{\circ}$	✓ statement ✓ 138°
	$\hat{A} + \hat{F} \neq 180^{\circ}$ $\therefore CADF \text{ is not cyclic quadrilateral (Opp}$	✓ ≠ 180°
	angles not Suppl.✓	✓ Conclusion (4)
4.2		

	PROOF: Construction Join C to A and A to E $\angle A_1 = 2\angle B \qquad \angle at \ centre = 2\angle at \ circum) \checkmark$ $A_2 = 2D \qquad \angle at \ centre = 2\angle at \ circum) \checkmark$ But $A_1 + A_2 = 360 \qquad \angle round \ a \ point) \checkmark$ $\therefore 2B + 2D = 360^{\circ}$ $\therefore B + D = 180^{\circ} \checkmark$	✓ Construction ✓ S/R ✓ S/R ✓ S/R
		✓Conclusion (5)
4.3	4.3.1 $\angle E_2 = \angle C$ ext \angle of a cyclic quad. \checkmark But $\angle C = \angle D_3$ corresponding angles, CB ED \checkmark $\angle E_2 = \angle D_3$ EF = DF \checkmark sides opp. Equal angles 4.3.2 $\angle F = 180^\circ - 2x$ \checkmark sum of angles in a $\triangle \checkmark$	\checkmark S/R \checkmark S/R \checkmark Conclusion (3) \checkmark ✓ S/R (2)
	4.3.3 ∠C = ∠D = x ✓ (Corresp. angles. CB ED) ✓ ∠ A_1 = 2∠C =2 x (∠ at centre) ✓ ∠ A_1 + = ∠F =2 x + 180° − 2 x = 180° ∴ BACF is a cyclic quad (Opp. angles supplementary) ✓	✓✓ S/R ✓ S/R ✓ S/R ✓ 180° ✓ reason
4.4	4.4.1 $\hat{F}_1 = x$ tan-chord theorem \checkmark $\hat{B}_1 = 2x \angle \text{ at centre} = 2\angle \text{ at circum } \checkmark$ $\hat{C}_2 = 90^0 - x \text{Right angle}$ $\hat{G}_1 = 90^0 - x (\text{sum of int } \angle \text{`s of } \Delta) \checkmark$	✓S/R ✓S/R ✓S/R
	$G_2 = 90^0 - x$ ($\angle s. \delta pp = sides$)	✓S/R

$G_1 = G_2$ CG bisect the B GH	✓S (5)
4.4.2 $\stackrel{\wedge}{CEF} = 90^{0} - x \checkmark (opp \angle s \ of \ cyclic \ quard) \checkmark$ $\stackrel{\wedge}{D_{2}} = 90^{0} \checkmark (line \ from \ centre \perp to \ chord) \checkmark$ $\stackrel{\wedge}{GBD} = 90^{0} + x \qquad (ext \angle of \ \Delta)$ $\stackrel{\wedge}{\therefore} \stackrel{\wedge}{GBD} = \stackrel{\wedge}{CEF}$	✓S ✓R ✓S✓R ✓SR (5)

TOTAL = 100