

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2017 GRADE 11

MATHEMATICS PAPER 1

MEMORANDUM

11 pages

MEMODANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (Paper 1)

MEMORANDUM

INFORMATION

A – Accuracy

CA – Continued Accuracy

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate CROSSED out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is UNACCEPTABLE.

MATHEMATICS (Paper 1)

	QUESTION 1	MARKS: 19
1.1.1	$x^{2} - 2x = 15$ $x^{2} - 2x - 15 = 0$ $(x - 5)(x + 3) = 0$ $x = 5 \text{ or } x = -3$	✓ std. form ✓ correct factors ✓ both solutions (3)
1.1.2	$4x^{2} - x - 5 < 0$ $(4x - 5)(x + 1) < 0$ $\frac{+ + +}{-1 - 1\frac{1}{4}}$	✓ factors
	$-1 < x < 1\frac{1}{4}$	✓ critical values ✓ correct inequality (3)
1.1.3	$\sqrt{2x - 1} + 2 = x$ $(\sqrt{2x - 1})^2 = (x - 2)^2$ $2x - 1 = x^2 - 4x + 4$ $0 = x^2 - 6x + 5$ $0 = (x - 5)(x - 1)$ $x = 5 \text{ or } x = 1$ Test: $x = 5$ only	 ✓ squaring both sides ✓ std. form ✓ factors ✓ both solutions ✓ accepting x = 5 (5)
	$2x^{\frac{2}{3}} - 8 = 0$ $2x^{\frac{2}{3}} = 8$ $x^{\frac{2}{3}} = 4$ $(x^{\frac{2}{3}})^{\frac{3}{2}} = \pm (4)^{\frac{3}{2}}$ $x = \pm 2^{3} \text{ OR}$ $x = \pm 8$ OR $x^{\frac{2}{3}} = 4$ $(\sqrt[3]{x^{2}})^{3} = (4)^{3}$ $x^{2} = 64$ $x = \pm 8$	$\sqrt{x^{\frac{2}{3}}} = 4$ ✓ raising both sides to the power $\frac{3}{2}$ $\sqrt{x} = \pm 2^{3} \text{ OR } x = \pm 8$ OR $\sqrt{x^{\frac{2}{3}}} = 4$ ✓ raising both sides to the power of 3 $\sqrt{x} = \pm 2^{3} \text{ OR } x = \pm 8$

MATHEMATICS (Paper 1)

	$ax^2 + bx + c = 0$	$\checkmark b = -a - c$
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(-a - c) \pm \sqrt{(-a - c)^2 - 4ac}}{2a}$ $= \frac{a + c \pm \sqrt{a^2 + 2ac + c^2 - 4ac}}{2a}$	✓ sub. in corr. formula
1.2	$=\frac{a+c \pm \sqrt{a^2-2ac+c^2}}{2a}$	✓ simplification to $\sqrt{a^2 - 2ac + c^2}$
	$=\frac{a+c \pm \sqrt{(a-c)^2}}{2a}$	$\checkmark (a-c)^2$
	$= \frac{a+c \pm (a-c)}{2a}$ $\therefore x = 1 \text{ or } x = \frac{c}{a}$	$\checkmark x = 1 \tag{5}$

	QUESTION 2	MARKS: 15
	$3y + x = 2 \dots \dots (1)$	
	from (1) $y^{2} + x = xy + y(2)$ $x = 2 - 3y$ subst. $x = 2 - 3y$ in (2)	$\checkmark x = 2 - 3y$
	$y^{2} + (2 - 3y) = y(2 - 3y) + y$ $y^{2} + 2 - 3y = 2y - 3y^{2} + y$	✓ sub. $x = 2 - 3y$ in (2)
2.1	$4y^2 - 6y + 2 = 0$	✓ std. form
	[÷ 2] $2y^{2} - 3y + 1 = 0$ $(2y - 1)(y - 1) = 0$ $y = \frac{1}{2} \text{ or } y = 1$ $\therefore x = \frac{1}{2} \text{ or } x = -1$	✓ factorisation
	$y = \frac{1}{2} \text{ or } y = 1$	✓ both y values
	$\therefore x = \frac{1}{2} \text{ or } x = -1$	✓ both x values
		(6)

MEMORANDUM MATHEMATICS (Paper 1) GRADE 11

	L.H.S: $\sqrt{b\sqrt{a}-b}$. $\sqrt{b\sqrt{a}+b}$	
	$= \sqrt{(b\sqrt{a}-b)(b\sqrt{a}-b)}$	$\checkmark (b\sqrt{a}-b)(b\sqrt{a}-b)$
2.2	$=\sqrt{b^2a-b^2}$	✓ simplification $\sqrt{b^2a - b^2}$
2.2	$=\sqrt{b^2(a-1)}$	
	$= b\sqrt{a-1} = \text{R.H.S}$	✓ factorisation ✓ b
	$= b \vee u - 1 = K.H.S$	(4)

	$3^{a} = 21^{b}$ $(3^{a})^{c} = (21^{b})^{c}$ $3^{ac} = (3^{b} \times 7^{b})^{c}$	✓ intro. power c on both sides $\checkmark (3^b \times 7^b)^c$
2.3	$3^{ac} = 3^{bc} \times 3^{ab}$ $3^{ac} = 3^{bc+ab}$	\checkmark deducing that $7^c = 3^a$
	ac = bc + ab	✓ equating the indices
	$ac = b(c + a)$ $\therefore b = \frac{ac}{a+c}$	✓ factorisation (5)

	QUESTION 3	MARKS: 18
3.1.1	13	✓ answer (1)
3.1.2	$T_n = an + b$ $-3 = 4(1) + b$ $-7 = b$ $T_n = 4n - 7$ ANY other valid method	$\checkmark b = -7$ \checkmark answer (2)
3.1.3	394 = 4n - 7 401 = 4n 100,25 = n since $n \notin \mathbb{N}$, 394 is NOT a term	✓ equation ✓ $100,25 = n$ ✓ any valid explanation (3)

MEMODANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

3.2.1	$T_{n} = n^{2} + 2n + c$ $0 = (1)^{2} + 2(1) + c$ $0 = 3 + c$ $-3 = c$ $T_{1} = a + b + c$	✓ corr. sub. ✓ simplification OR ✓ corr. sub.
	0 = 1 + 2 + c $0 = 3 + c$ $-3 = c$	✓ simplification (2)
3.2.2	$T_n = n^2 + 2n + c$ $T_{10} = (10)^2 + 2(10) - 3$ $= 117$	✓ corr. sub. ✓ answer (2)
	$n^2 + 2n - 3 > 360$ $n^2 + 2n - 363 > 0$	$\checkmark n^2 + 2n - 363 > 0$
3.2.3	C.V: $n = \frac{(-2) \pm \sqrt{2^2 - 4(1)(-363)}}{2(1)}$	✓ corr. sub. in corr. formula
	n = -20,08 or n = 18,08	✓ both critical values
	$∴ n = 19 T_{19} > 360$	$\checkmark n = 19$ (4)
3.3.1	a = 10	✓ answer (1)
3.3.2	$b = 99 + 98 + 97 + 96 \dots + 50 + \dots + 3 + 2 + 1$ (99 + 1) = 100 (98 + 2) = 100	✓ sequence
		✓ (100) × 49 ✓ answer (3)

MEMODANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

	QUESTION 4	MARKS: 6
4.1	$ \begin{array}{c} x - 2 \ge 0 \\ x \ge 2 \end{array} $	$\checkmark x - 2 \ge 0$ $\checkmark \text{ answer}$ (2)
4.2	2	✓ answer (1)
4.3	$k = 2 + \frac{\sqrt{3 - 2}}{4}$ $= 2\frac{1}{4}$ $g(k) = \left(2\frac{1}{4}\right)^2 - 1$ $= 4\frac{1}{16} \mathbf{OR} \frac{65}{16} \mathbf{OR} 4,06$	$ √ k = 2\frac{1}{4} $ ✓ substitution ✓ answer
		(3)

	QUESTION 5	MARKS: 12
5.1	for x- intercept, make $y = 0$ $3^{x} - 1 = 0$ $3^{x} = 1$ $3^{x} = 3^{0}$ $x = 0$ for y- intercept, make $x = 0$ $y = 3^{0} - 1$ $y = 0$	$ \checkmark 1 = 3^{0} $ $ \checkmark x = 0 $ $ \checkmark y = 0 $ (3)

MEMORANDUM MATHEMATICS
(Paper 1) GRADE 11

5.2.	-1 x	 ✓ shape ✓ passing thr. origin ✓ asymptote at y = -1 (3)
5.3	$(-1; \infty)$ OR $y > -1$	✓ answer (1)
5.4.1	x = -2	✓ answer (1)
5.4.2	x > -1	✓ answer (1)
5.5	$3h(x) = 726$ $h(x) = 242$ $3^{x} - 1 = 242$ $3^{x} = 243$ $3^{x} = 3^{5}$	✓ 242 ✓ 3 ⁵
	x = 5	✓ answer (3)

MATHEMATICS (Paper 1)

	QUESTION 6	MARKS: 10
6.1	$ \begin{aligned} x &= 1 \\ y &= -2 \end{aligned} $	$ \begin{array}{c} \checkmark \ x = 1 \\ \checkmark \ y = -2 \end{array} $ (2)
6.2	for x-intercept, make $y = 0$ $0 = \frac{3}{x - 1} - 2$ $2 = \frac{3}{x - 1}$ $x = 2\frac{1}{2}$ for y -intercept, make $x = 0$ $y = \frac{3}{0 - 1} - 2$ $y = -5$	$\checkmark y = 0$ $\checkmark x = 2\frac{1}{2}$ $\checkmark y = -5$ (3)
6.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ shape ✓ x and y-intercepts ✓ asymptotes (3)
6.4	Reflection about the <i>y</i> -axis.	✓ reflection ✓ y-axis (2)

MEMODANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

	QUESTION 7	MARKS: 20
7.1.1	$x = \frac{-b}{2a}$ $= \frac{-(8)}{2(2)}$ $= -2$ $D(-2; -5)$	✓ corr. sub. in corr. formula ✓ x -co-ord 2 ✓ y -co-ord 5 (if not ordered pair) $\frac{2}{3}$ (3)
7.1.2	$x \ge 0 \text{ or } x \le -4$	
	$LM = k(x) - p(x)$ $= 2x^{2} + 8x + 3 - (2x - 4)$ $= 2x^{2} + 6x + 7$ $Min_{LM} = \frac{4ac - b^{2}}{4a}$ $= \frac{4(2)(7) - 6^{2}}{4(2)}$ $= 2\frac{1}{2}$	✓ simplification ✓ formula ✓ corr. sub. in corr. formula ✓ answer
7.1.3	OR $LM = k(x) - p(x)$ $= 2x^{2} + 8x + 3 - (2x - 4)$ $= 2x^{2} + 6x + 7$	OR ✓ simplification
	$x = \frac{-b}{2a}$ $= \frac{-(6)}{2(2)}$ $= -\frac{3}{2}$	✓ corr. sub. in corr. formula
	$= -\frac{1}{2}$ $Min_{LM} = 2(-\frac{3}{2})^2 + 6(-\frac{3}{2}) + 7$ $= 2\frac{1}{2}$	✓ sub. x in eqn. ✓ answer (4)

MATHEMATICS (Paper 1)

	T	Г
7.1.4	Ave. grad = $\frac{k(-2) - k(3)}{-2 - 3}$ = $\frac{-5 - 45}{-2 - 3}$ = 10	√ -5 $ √ -45 $ $ ✓ answer $ (3)
7.1.5	$2x^{2} + 8x + 3 = 2x + t$ $2x^{2} + 6x + 3 - t = 0$ $\Delta = b^{2} - 4ac$ $= (6)^{2} - 4(2)(3 - t)$ $= 39 - 24 + 8t$ $= 12 + 8t$ for = roots, $\Delta = 0$ $12 + 8t = 0$ $8t = -12$ $t = -1\frac{1}{2} \text{ or } -\frac{3}{2} \text{ or } -1,5$	✓ std. form ✓ corr. sub. in formula ✓ value of Δ ✓ $\Delta = 0$ ✓ answer
7.2	1;-5	✓ shape ✓ x-intercepts ✓ turning point in 3 rd quadrant (3)