

Mathematics Paper 1

FORM 4

6 June 2018 Session 1

TIME: 2 hours TOTAL: 100 marks

Examiner: Miss M. Eastes Moderator: Mrs. D. Algie

NAME AND SURNAME:

TEACHER:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTIONS.

- This question paper consists of 15 pages. Formulae are given on page 2.
 Please check that your question paper is complete.
- Answer all questions on your question paper.
- · Read and answer all questions carefully.
- It is in your own interest to write legibly and to present your work neatly.
- All necessary working which you have used in determining your answers must be clearly shown.
- Approved non-programmable calculators may be used except where otherwise stated. Where
 necessary give answers correct to 2 decimal places unless otherwise stated.
- Ensure that your calculator is in DEGREE mode.
- Diagrams have not necessarily been drawn to scale.
- State all restrictions where necessary.

Questions	1	2	3	4	5	6
Out of	27	6	9	5	5	12
Mark						
Question	7	8	9	10	11	TOTAL
Question Out of	7 4	8 5	9 18	10 4	11 5	TOTAL 100

SECTION A

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $T_n = a + (n-1)d$

QUESTION 1 [27]

Solve for x without using the calculator: (you can use the calculator to check your answers if necessary)

a)	$x(3x-1)=2 \ ; \ x\in Z$	(4)

b) $\frac{1}{x+1} + \frac{3}{x-2} = \frac{x+2}{x+1}$ (6)

c)
$$2^{-2x} = \frac{1}{32}$$
 (3)

d) $x + \sqrt{x - 2} = 4$	(5)
e) $5x^{\frac{-2}{3}} = 80$	(5)
f) $x^2 - 3x + 2 \ge 0$	(4)

QUESTION 2 [6]

Co	onsider the sequence - 5; - 2; 1; 4; 7;	
a)	Write down the next two terms of this sequence.	(2)
b)	Determine the formula of the n th term of this sequence in its simplest form.	(2)
c)	Determine the value of the 25 th term.	(2)

QUESTION 3 [9]

Determine the equations of the following graphs:

a)
$$y = 2^{x-p} + q$$
 (5)

 $b) f(x) = \frac{a}{x+p} + q (4)$

SECTION B

QUESTION 4 [5]

Solve for x: $\sqrt{4^{x+1} + 2^{2x+5}} = 3.2^{2-x}$	(5)
QUESTION 5 [5]	
A pupil solves a quadratic equation by using the quadratic formula.	
Her solution is: $x = \frac{-5 \pm \sqrt{25 - p^2}}{2}$	
a) For which value(s) of p will the roots be equal?	(2)
b) Discuss the nature of the roots if p = -3.	(3)

QUESTION 6 [12]

Without using a calculator, simplify:

a)	$\frac{3^x - 3^{x-2}}{6 \cdot 3^x - 4 \cdot 3^{x-2}}$	(5)
b)	$\frac{\sqrt[3]{(a-b)^3} \times \sqrt[3]{(a-b)^3}}{a^2 - b^2}$	(3)

c) $\left(16^{\frac{1}{4}} + 32^{-\frac{2}{5}}\right)^{\frac{1}{2}}$	(4)
QUESTION 7 [4]	
For which real values of k does the following function have real roots?	
$2x^2 - 8x + 6 = k$	(4)

QUESTION 8 [5]

The graph below depicts the relationship between n and T_n .

Determine the general term. (Tn in terms of n)

QUESTION 9 [18]

Below is a sketch graph of a parabola, f, and a straight line, g. P(1; 8) is the turning point of f.

$$g(x) = \frac{1}{3}x - 1$$

The graph of f cuts the y-axis at (0;6), g cuts the y-axis at (0;-1). B is a point on the x-axis and QM is perpendicular to the x-axis.

a) Show that $f(x) = -2x^2 + 4x + 6$	(4)
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

b)	Determine the coordinates of point C	(6)
c)	Determine the maximum length of QM between the graph of f and g . QM \perp AB.	(5)
d)	Find values of x for which: $f(x)$. $g(x) > 0$	(3)

QUESTION 10 [4]

 $p(x) = ax^2 + bx + c$. You are given the following information about p:

- the roots differ by 6
- the value of $x = \frac{-b}{2a}$ is 3.
- The range is y ≤ 4.

Draw a sketch graph of p below, indicating the x-intercepts and the co-ordinates of the turning point.

(4)

QUESTION 11 [5]

One of our soccer players kicks the ball so that it follows the path described by the equation

$$h = \frac{-1}{20}(d - 15)^2 + \frac{45}{4},$$

where h is the height and d is the horizontal distance, in metres.

EXTRA PAPER FOR WORKING IF NEEDED