

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNIE 2018 GRADE 11

MATHEMATICS PAPER 1

MEMORANDUM

8 pages

MEMODANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS (Paper 1)

MEMORANDUM

INFORMATION

A – Accuracy

C.A. – Continued Accuracy

NOTE:

- If a candidate answered a question **TWICE**, mark only the first attempt.
- If a candidate **CROSSED** out an answer and did not redo it, mark the crossed-out answer. Stop marking at the second calculation error.
- Consistent accurancy applies to **ALL** aspects of the marking memorandum.
- Assuming values / answers in order to solve a problem is **UNACCEPTABLE**.

QUE	QUESTION 1			
1.1	1.1.1	$x \ge 3$	✓ answer	(1)
	1 1 0			(1)
	1.1.2	$x \neq 3; x \in R$	✓ answer	(1)
1.2	$x \in ($	$(\frac{1}{3};1)$	\checkmark $\frac{1}{3}$	
			√ 1	(2)
1.3	1.3.1	$(x+1)\left(x-\frac{1}{2}\right) = 0$ $x = -1 \text{of} x = \frac{1}{2}$		
		$x = -1 \text{of} x = \frac{1}{2}$	$\checkmark x = -1$ $\checkmark x = \frac{1}{2}$	
			$\checkmark x = \frac{1}{2}$	(2)
	1 2 2			
	1.3.2	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
		$x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-1)}}{2(1)}$	✓ Substitution	
		$x = \frac{-1 \pm \sqrt{5}}{2}$	$\begin{array}{ccc} \checkmark & x = 0.62 \\ \checkmark & x = -1.62 \end{array}$	
		x = 0.62 of $x = -1.62$	✓ Correct rounding off	(4)

MEMORANDUM	MATHEMATICS	
WIEWIORANDOW	(Paper 1)	GRADE 9

		<u></u>	-		
	1.3.3	$x^{2} - 2x + 1 \le 0$ $\therefore (x - 1)(x - 1) \le 0$ $\therefore (x - 1)^{2} \le 0$	✓	factors	
		$\therefore x = 1$	✓	answer	(2)
	1.3.4	$x + 3\sqrt{x - 1} = 1$			
		$3\sqrt{x-1} = 1 - x$ $(3\sqrt{x-1})^2 = (1-x)^2$	✓	squaring	
		$9(x-1) = 1 - 2x + x^{2}$ $x^{2} - 11x + 10 = 0$ $(x-10)(x-1) = 0$ $x \neq 10 \text{ of } x = 1$	✓	standard form factors critical values	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓	choosing $x = 1$	(5)
	1.0.7				
	1.3.5	$\begin{vmatrix} 3^x(1+1+1) = 3^4 \\ 3^x(3) = 3^4 \end{vmatrix}$	✓	factors	
		$\frac{3^{x}(3)}{3} = \frac{3^{4}}{3}$ $3^{x} = 3^{4-1}$	✓	simplification $3^x = 3^{4-1}$	
		$3^x = 3^3$ $x = 3$	✓	answer	(3)
1.0					
1.2	$x = 6$ $4y^{2} - 5y^{2} - 5y^{2} - 5y - 5$	$x = 6$ $-2y + 6$ $2y - 6$ $(2y - 6)^{2} + 2y(2y - 6) = 3y^{2}$ $-24y + 36 + 4y^{2} - 12y = 3y^{2}$ $-36y + 36 = 0$ $-6)(y - 6) = 0$ of $y = 6$ $\left(\frac{6}{5}\right) - 6$ of $x = 2(6) - 6$ $-\frac{18}{5}$ of $x = 6$	* * * * * * *	x as subject sub. x into equation 2 standard form factors both y-values both x-values	
					(6)
					[26]

MEMORANDUM	MATHEMATICS	
	(Paper 1)	GRADE 9

QUESTION 2

2.1	2 /12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
2.1	$3\sqrt{12}$ -		\checkmark simplification $(6\sqrt{3})$	
		$\overline{\times 4} - \sqrt{3 \times 25}$		
	$=6\sqrt{3}$	$-5\sqrt{3}$	✓ simplification $(5\sqrt{3})$	
	$=\sqrt{3}$		✓ answer	(3)
2.2	2.2.1	To show: $2^{2010} + 2^{2012} = 5.2^{2010}$ LHS: $2^{2010} + 2^{2010}.2^2$ $= 2^{2010}(1 + 2^2)$ $= 2^{2010}(5)$ $= 5.2^{2010} = RHS$	✓ factors $(2^{2010}, 2^2)$ ✓ factors $(2^{2010}(1 + 2^2))$	(2)
				(-)
	2.2.2	$ \frac{2^{2010} + 2^{2012} + 10}{2^{2009} + 1} \\ = \frac{5 \cdot 2^{2010} + 10}{2^{2009} + 1} \\ = \frac{5(2^{2010} + 2)}{2^{2009} + 1} \\ = \frac{5 \cdot 2(2^{2009} + 1)}{2^{2009} + 1} \\ = 10 $	 ✓ substitution (5.2²⁰¹⁰) ✓ factors 5(2²⁰¹⁰ + 2 ✓ factors 5.2(2²⁰⁰⁹ + 1) ✓ answer 	(4)
			diswei	(4)
2.3	2.3.1	$x^{-1} + y^{-1}$ $= \frac{1}{x} + \frac{1}{y}$ $= \frac{y+x}{xy}$	✓ application $\frac{1}{x} + \frac{1}{y}$ ✓ correct numerator ✓ correct denominator	(3)
	2.3.2	sum of reciprocals = $\frac{1}{x} + \frac{1}{y}$ \therefore sum of reciprocals = $\frac{y+x}{xy}$ \therefore sum of reciprocals = $\frac{10}{20}$ = $\frac{1}{2}$	✓ formula $\frac{y+x}{xy}$ ✓ substitution (10) ✓ substitution (20) ✓ simplified answer	(4)
	1			[16]

MEMORANDUM	MATHEMATICS	
	(Paper 1)	GRADE 9

OUE	QUESTION 3				
3.1	3.1.1	-27;-39	✓ -27 ✓ -39	(2)	
	3.1.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ method mark for finding the first and the second row differences		
		2a = second difference			
		$\therefore 2a = -2$			
		$\therefore a = -1$	$\checkmark a = -1$		
		3a + b = -4 $3(-1) + b = -4$ $b = -1$	$\checkmark b = -1$		
		a + b + c = 1 $\therefore -1 + (-1) + c = 1$			
		$ c = 3 $ $ T_n = -n^2 - n + 3 $	$\checkmark c = 3$	(4)	
				(. /	
	3.1.3	$T_n = -n^2 - n + 3$ $T_{30} = -(30)^2 - (30) + 3$ $T_n = -927$	✓ substitution ✓ answer	(2)	
	3.1.4	$T_n = -n^2 - n + 3 \text{ and}$			
	3.1.4	$T_n = -n - n + 3$ and $T_n = -7479$ $\therefore -n^2 - n + 3 = -7479$	$\checkmark T_n = -7479$		
			✓ standard form		
		$\therefore (n - 86)(n + 87) = 0$ $\therefore n = 86 \ \therefore 86th \text{ term}$	✓ n = 86	(3)	

MEMORANDUM MATHEMATICS
(Paper 1) GRADE 9

3.2	The pattern that is forming is:			
	1; 4; 6; 9; 16; 25;			
	$T_n = n^2$ where <i>n</i> refers to the <i>n</i> th odd number	✓	$T_n=2n-1$	
	Which odd number is 1001?	✓	1001 = 2n - 1	
	Formula for the odd numbers are $T_n = 2n - 1$			
	(This is a linear pattern with $b = 2$ and $c = -1$	✓	simplification	
	$\therefore 1001 = 2n - 1$	✓	n = 501	
	$ \begin{array}{l} $	✓	$501^2 = 251001$	(6)
				Ì
3.3	$5n-2 \ge 100$	✓	correct equating	
	$5n \ge 102$			
	$n \ge 20,4$	✓	$n \ge 20,4$	
	$\therefore n = 20$			
	20 questions	√	n = 20	(3)
				[20]

QUESTION 4

4.1	A(0; 1)		$\checkmark x = 0$	
7.1	11(0,1)	,	$\checkmark y = 1$	(2)
4.2	4.2.1	$g(x) = 3^{-x}$ OR $g(x) = (\frac{1}{3})^x$	$\checkmark \checkmark g(x) = 3^{-x}$ OR	
			$\checkmark \checkmark g(x) = (\frac{1}{3})^x$	(2)
	4.2.2	(-1;3) (0;1) (1;1/3)	✓ shape ✓ y- intercept ✓ x-axis asymptote	
		<u> </u>		(3)

MEMORANDUM	MATHEMATICS	
IVILIVIORANDOW	(Paper 1)	GRADE 9

4.3	4.3.1	$k(x) = 3^{-x+1} + 2$	✓ reflection in <i>y</i> -axis	
		$\therefore k(x) = 3^{-(x-1)} + 2$	✓ 1 unit right	
		$k(x) = 3^{-x+1} + 2$ $k(x) = 3^{-(x-1)} + 2$ $k(x) = (3^{-1})^{x-1} + 2$	✓ 2 units up	
		$\therefore k(x) = (\frac{1}{3})^{x-1} + 2$		
		∴ first reflected in y-axis then moved 1 unit right		
		and 2 units upwards		(3)
				[10]

QUESTION 5

5.1	$g(x) = -2(x^{2} - 2x) + 16$ $\therefore g(x) = -2(x^{2} - 2x + 1 - 1) + 16$ $\therefore g(x) = -2[(x - 1)^{2} - 1] + 16$ $\therefore g(x) = -2(x - 1)^{2} + 18$ OR $x = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$ $y = \frac{4ac - b^{2}}{4a} = 18$	✓ calculating +1 ✓ -1 ✓ factorizing $(x - 1)^2$ ✓ simplification of $-2[(x - 1)^2 - 1] + 16$ OR ✓ $x = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$	
	$y = \frac{4a}{4a} = 18$ $\therefore TP = (1; 18)$ Subst in $y = a(x+p)^2 + q$ $y = -2(x+1)^2 + 18$	$\checkmark y = \frac{4ac - b^2}{4a} = 18$ $\checkmark \therefore TP = (1; 18)$ $\checkmark \text{ substitution}$	(4)
5.2	Q(1; 18)	$\checkmark x = 1$ $\checkmark y = 18$	(2)
5.3	$-2x^{2} + 4x + 16 = 0$ $\therefore x^{2} - 2x - 8 = 0$ $\therefore (x - 4)(x + 2) = 0$ $\therefore x = 4 \text{ of } x = -2$ $\therefore D(-2; 0) \text{ and } E(4; 0)$	✓ standard form ✓ factorisation ✓ $x = 4$ of $x = -2$ ✓ $D(-2; 0)$ and $E(4; 0)$	(4)

MEMORANDUM	MATHEMATICS	
	(Paper 1)	GRADE 9

5.4	Vert: $x = -2$ and Hor: $y = 18$	$\checkmark x = -2$	
	$\therefore p = 2 \text{ and } q = 18$	$\checkmark y = 18$	
	p 2 and q 10	$\checkmark p = 2$	
		$\checkmark q = 18$	(4)
		q 10	(. /
5.5	x > 1 OR	$$ $x > 1$	
	$x \in (1, \infty)$	OR	
	<i>n</i> = (1,)	$\checkmark \checkmark x \in (1; \infty)$	(2)
5.6	$y \in (-\infty; 18)$	$\checkmark \checkmark y \in (-\infty; 18)$	(2)
5.7	$x \in (-\infty, \infty), x \neq -2$	$\checkmark \chi \in (-\infty; \infty)$	
	OR	$\checkmark x \neq -2$	
	$x \in (-\infty; -2) \cup (-2; \infty)$	OR	
		$\checkmark x \in (-\infty; -2)$	
		√ (-2;∞)	(2)
		,	[20]

QUE	ESTION 6		
6.1	$f(x) = -2(x - 1)^{2} + 8$ $f(x) = -2(x^{2} - 2x + 1) + 8$ $f(x) = -2x^{2} + 4x + 6$ $b = 4 \text{ and } c = 6$	$ \begin{array}{ccc} \checkmark & p = 1 \\ \checkmark & q = 8 \\ \checkmark & -2x^2 + 4x + 6 \\ \checkmark & b = 4 \\ \checkmark & c = 6 \end{array} $	(5)
6.2	$g(x) = -2(x+1)^{2} + 11$ \mathbf{OR} $g(x) = -2(x+2)^{2} + 4(x+2) + 6 + 3$	$ \begin{array}{c} \checkmark a = -2 \\ \checkmark p = 1 \\ \checkmark q = 11 \end{array} $	
	$g(x) = -2(x+2) + 4(x+2) + 6 + 3$ $\therefore g(x) = -2x^2 - 4x + 9$	OR $ \checkmark a = -2 $ $ \checkmark b = -4 $ $ \checkmark c = 9 $	(3)
			[8]
		TOTAL:	100