



# Mathematics Paper 1

## FORM 4

6 June 2018 Session 1

TIME: 2 hours

TOTAL: 100 marks

**Examiner: Miss M. Eastes** 

Moderator: Mrs. D. Algie

## NAME:

## PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTIONS.

- This question paper consists of 16 pages. Formulae are given on page 2.
   Please check that your question paper is complete.
- Answer all questions on your question paper.
- Read and answer all questions carefully.
- It is in your own interest to write legibly and to present your work neatly.
- All necessary working which you have used in determining your answers must be clearly shown.
- Approved non-programmable calculators may be used except where otherwise stated. Where
  necessary give answers correct to 2 decimal places unless otherwise stated.
- Ensure that your calculator is in DEGREE mode.
- Diagrams have not necessarily been drawn to scale.
- State all restrictions where necessary.

|           | - ^ |   |    | 1116 |      |       |
|-----------|-----|---|----|------|------|-------|
|           | PA  |   |    |      |      |       |
| Questions | 1   | 2 | 3  | 4    | 5    | 6     |
| Out of    | 27  | 6 | 9  | 5    | 5    | 12    |
| Mark      |     |   | AG | 3    | al L |       |
| Question  | 7   | 8 | 9  | 10   | 11   | TOTAL |
| Out of    | 4   | 5 | 18 | 4    | 5    | 100   |
| Mark      |     |   |    |      |      |       |

| a) $x(3x-1) = 2$ ; $x \in Z$                         |        | (4) |
|------------------------------------------------------|--------|-----|
| 3x2-x=2=0                                            |        |     |
| 3x2-x-7 =0 Vcd                                       |        |     |
| (x-1)(3x+z)=0                                        |        |     |
| x = 1 x = 2 Va                                       |        |     |
| 3                                                    |        |     |
| . 1 . 3 x+2                                          |        | (0) |
| b) $\frac{1}{x+1} + \frac{3}{x-2} = \frac{x+2}{x+1}$ |        | (6) |
| $\frac{1}{x+1}$ + 3 = $\frac{x+2}{x+1}$              |        |     |
|                                                      | 6      |     |
| (x-z) x + 3(x+1) = (x+z)x-z)                         | 4      |     |
| 2-2+3×+3=>2-4                                        |        |     |
| $0 = x^2 - ux - 5 \sqrt{c^2}$                        |        |     |
| >C# 5 OF 2 =-1                                       |        |     |
| Va                                                   | x = -1 |     |
|                                                      | DC ≠ 2 |     |
|                                                      |        |     |
|                                                      |        |     |
|                                                      |        |     |
| c) $2^{-2x} = \frac{1}{22}$                          |        | (3) |
| 32                                                   |        |     |
| 2-2x= 2-5 Va                                         |        |     |
| -2>(=-5 Vm                                           |        |     |
| x = 5 V(9                                            |        |     |
| 2                                                    |        |     |
|                                                      |        |     |

SECTION A

QUESTION 1 [27]

Solve for x without using the calculator: (you can use the calculator to check your answers if necessary)

| $d)  x + \sqrt{x - 2} = 4$                        | (5) |
|---------------------------------------------------|-----|
| Vx-z = 4-x Va                                     |     |
| X-Z = 16-8x + x? Vm                               | 100 |
| $0 = x^2 - 9x + 18$                               |     |
| $0 = x^{2} - 9x + 18$ $0 = (x - 6)(x - 3) \sim a$ |     |
| x + 6 or x = 3                                    |     |
|                                                   |     |
| e) $5x^{\frac{-2}{3}} = 80$                       | (5) |
| $5x^{-\frac{2}{3}} = 80$                          |     |
| $\chi^{-\frac{1}{3}} = 16 \sqrt{a}$               |     |
| $\chi = (16)^{-\frac{3}{2}} Vm$                   |     |
| $\mathcal{L} = (\mathbf{Z}^{4})^{-\frac{3}{2}}$   |     |
| $x = 2^{-6} \sqrt{cq}$                            |     |
| 2C = + <u> </u>                                   |     |
| 2 = + 1<br>Va 64 Vc9                              |     |
| f) $x^2 - 3x + 2 \ge 0$                           | (4) |
| (2 5)(2 1) 7 5                                    |     |
|                                                   |     |
| X7/2 or X ()                                      |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |

 $T_n = a + (n-1)d$ 

## QUESTION 2 [6]

Consider the sequence - 5; - 2; 1; 4; 7; ...

a) Write down the next two terms of this sequence.

c) Determine the value of the 25<sup>th</sup> term.

Tn = 3(25) -8 Vg

## QUESTION 3 [9]

Determine the equations of the following graphs:

a) 
$$y = 2^{x-p} +$$

(2)

(2)

(2)







4|Page

## SECTION B

## QUESTION 4 [ 5]

| Solve for x: $\sqrt{4^{x+1} + 2^{2x+5}} = 3.2^{2-x}$ | (5) |
|------------------------------------------------------|-----|
| 12242 Va 2X+5 = 3.22->C                              |     |
| 12x(22+25) VEA = 3.22-X                              |     |
| 1 22x 36 = 3.22-x                                    |     |
|                                                      |     |
| 22.6 = 3.22-2                                        |     |
| $2^{x} \cdot Z = \mathbb{Z}$                         |     |
| 2×+1 = 22-× Via                                      |     |
| X+1 = z-X                                            |     |
| Zoc = 1                                              |     |
| >C=1 Vea                                             |     |
| 2                                                    |     |

## QUESTION 5 [5]

A pupil solves a quadratic equation by using the quadratic formula.

a) For which value(s) of p will the roots be equal?

| a) | For which value(s) of p will the roots be equal? |   | (2) |
|----|--------------------------------------------------|---|-----|
|    | 25-p2=0 Va                                       |   |     |
|    | $-p^{2} = -25$                                   |   |     |
|    | p= ±5 Vca                                        | ¥ |     |
|    | 1                                                |   |     |

b) Discuss the nature of the roots if p = -3.

$$\Delta = 75 - (-3)^{7} \text{ /m}$$

$$= 16 \text{ /a}$$

$$= 8 \text{ square nr} : \text{ rational + real roots}$$

QUESTION 6 [12]

(3)

6|Page

Simplify: # without using a calculator.

| a) | $\frac{3^{x}-3^{x-2}}{6.3^{x}-4.3^{x-2}}$ | (5) |
|----|-------------------------------------------|-----|
|    | = 32 (6-4.3=2)                            | _   |
| _  | - 1 - <del> </del>                        | _   |
|    | 6 - <del>4</del>                          |     |
| =  | = 4<br>25 Via                             |     |
|    |                                           |     |

| b) $\frac{\sqrt[3]{(a-b)^3} \times \sqrt[3]{(a-b)^3}}{a^2-b^2}$ | (3) |
|-----------------------------------------------------------------|-----|
| (a-b)(a-b) Va                                                   |     |
| = a-b /cq                                                       |     |
| arb                                                             |     |
|                                                                 |     |

7|Page

| c) $\left(16^{\frac{1}{4}} + 32^{-\frac{2}{5}}\right)^{\frac{1}{2}}$          | (4) |
|-------------------------------------------------------------------------------|-----|
| $= (2 + 3 - 5)^{\frac{1}{2}} \sqrt{a}$ $= (3 + 3 - 5)^{\frac{1}{2}} \sqrt{a}$ |     |
| = (2 + 2-2) = Via                                                             |     |
| = (2+1)==                                                                     |     |
| = 19/2                                                                        |     |
| (9(4)                                                                         |     |
| = 3.                                                                          |     |
| 2 19                                                                          |     |
|                                                                               |     |
|                                                                               |     |

#### QUESTION 7 [4]

For which real values of k does the following function have real roots?

## QUESTION 8 [5]

The graph below depicts the relationship between n and  $T_n$ .

Determine the general term. (Tn in terms of n)

(5)





8|Page

9|Page

## QUESTION 9 [18]

Below is a sketch graph of a parabola, f, and a straight line, g. P(1; 8) is the turning point of f.

$$g(x) = \frac{1}{2}x - 1$$

The graph of f cuts the y-axis at (0;6), g cuts the y-axis at (0;-1). B is a point on the x-axis and QM is perpendicular to the x-axis.



a) Show that  $f(x) = -2x^2 + 4x + 6$ 

| y = 9(x-1)2+8 Va |  |
|------------------|--|
| J6=9(0-1)2+8 Vm  |  |
| -2=9 1/19        |  |

$$y = -2(x-1)^{2} + 8$$

$$y = -2(x^{2}-2x+1) + 8$$

10 | Page

(6) b) Determine the coordinates of point C MARKE c) Determine the maximum length of QM between the graph of  $\it f$  and  $\it g$ . QM  $\perp$ AB. (5) d) Find values of x for which: f(x).g(x) > 0(3)

> vea war WOOG

> > 11|Page

+4x +6 X=-|

## QUESTION 10 [4]

 $p(x) = ax^2 + bx + c$ . You are given the following information about p:

- . the roots differ by 6
- the value of  $x = \frac{-b}{2a}$  is 3
- The range is y ≤ 4.

Draw a sketch graph of p below, indicating the x-intercepts and the co-ordinates of the turning point.



## QUESTION 11 [5]

One of our soccer players kicks the ball so that it follows the path described by the equation

$$h = \frac{-1}{20}(d-15)^2 + \frac{45}{4},$$

where h is the height and d is the horizontal distance, in metres.

She claims that she can kick the ball a horizontal distance of 40m.

Is that true?

(4)

Prove your answer by showing all calculations.



(5)

-1 (d-15)2 + 45 = 0 9

-1 (d-15)2 = -46 Vcq

 $(d-15)^{2} = 225 \sqrt{9}$ 

not true max distance is 30m