

Mathematics Paper 2 June 2016

FORM 4

Examiner:		A G	A Gunning		Mo	Moderators: P		P Denissen, C Mundy		
Time:		21/2	2½ hours		Ma	Marks:		125		
NAM										
Ques No	1	2	3	4	5	6	7	8	TOTAL	%
Out of	16	14	40	10	10	6	20	9	125	100
Mark										

- All questions are to be answered in this booklet.
- This question paper consists of 17 pages. Included in this, is a list of useful formulae. Please check that your question paper is complete.
- Read and answer all questions carefully.
- It is in your own interest to write legibly and to present your work neatly.
- All necessary working which you have used in determining your answers must be clearly shown.
- Approved non-programmable calculators may be used except where otherwise stated. Where
 necessary give answers <u>correct to 2 decimal places</u>.
- Diagrams have not necessarily been drawn to scale.

A(-2;3), B(2;-3) and C(-4;-3) are the vertices of a triangle.

(a) Calculate the gradients of AC and BC				
(b) Calculate the inclination of the lines AC and BC	(3)			

c) Find the coordinates of the midpoint of AC. Label this point M.	(2)
l) Find the equation of the line which is perpendicular to AC and which passes thro	ough M.
	(4)
e) Write down the coordinates of the x and y intercepts of the line found in (d)	(2)
Find the area of triangle ABC.	(2)

S(-6; -2).

(a) Determine the equation of a straight line which passes through the points B(-2;4) and C(2;2) (4)

(b) You are given quadrilateral PQRS with coordinates P(0; 4), Q(3; 1), R(-3; -5) and

(i) Plot each of these points on the given set of axes. (2)

(ii) How would you prove that PQRS is a rectangle? (3)

(iii) Using the method you specified, prove this.	(5)
	[14]
a) If $5 \sin \theta = 3$ and $90^{\circ} \le \theta \le 360^{\circ}$, determine we of a calculator,	the aid of a sketch, and without the use
1	
(i) $\frac{1}{\tan \theta}$	(4)
(ii) $\frac{5\cos\theta}{2}$	(2)
(11) 2	(2)

(b) Using the special angle triangles, determine the value of each of the following, without using				
a calculator. Show all relevant steps needed to determine the	answers.			
(i) $\sin 150^\circ + \cos 120^\circ$	(3)			
(ii) $sin^2 225^\circ - tan 135^\circ$	(3)			
(c) Simplify without the use of a calculator. Show all relevant st	eps needed to determine the			
answers.				
(i) $\frac{\sin(-20^\circ)}{\cos 250^\circ}$	(3)			
(ii) $1 - \sin^2\theta - \cos^2\theta$	(2)			

(iii) $\frac{\cos(360^{\circ}-x).\cos(90^{\circ}-x).\tan(180^{\circ}-x)}{\cos(180^{\circ}+x).\sin(360^{\circ}-x)}$	(7)	
$\cos(180^{\circ} + x).\sin(360^{\circ} - x)$	(7)	
$(iv)\frac{\cos(90^{\circ}-\alpha).\tan(180^{\circ}+\alpha)}{\tan(180^{\circ}-\alpha).\sin(180^{\circ}+\alpha)} + \frac{\cos(90^{\circ}+\alpha)}{\sin(360^{\circ}-\alpha)}$	(7)	
$(v) \frac{\sin(-338^\circ).\cos(300^\circ)}{\cos(300^\circ)}$	(6)	
cos 248°.tan135°	(6)	

(d) If $sin 18^\circ = p$	determine the following in terms of p .	
(i) <i>sin</i> 198°		(1)
(ii) cos(-108°)		(2)
		[40]

BOD is a diameter of the circle with centre O. AB = AD and $O\hat{C}D = 35^{\circ}$, Calculate the value of the following angles, giving all relevant reasons.

	(2)	
(b) <i>CÔD</i>		
(c) <i>CBD</i>	(2)	
	(2)	
(e) $A\widehat{D}B$	(2)	

[10]

D, E, F and G are points on the circle with centre M.

 $\widehat{F}_1 = 7^{\circ}$ and $\widehat{D}_2 = 51^{\circ}$. Determine the value of each of the following angles. Give all relevant reasons.

(a) $\widehat{D_1}$	(2)
---------------------	-----

(b)	\widehat{M}_1	(2)
(-/	I	(-

(c)	$\widehat{F_2}$	(2)

(d) \hat{G}	(2)
(a) G	(2)

(e)	$\widehat{E_1}$	(2)
(C)	L_1	(4)

O is the center of the circle and SPT is a tangent. Determine the values of a, b and c. Give all relevant reasons.

(a) Determine a (2)

(b) Determine *b*

(c) Determine c (2)

[6]

(2)

Determine, with all relevant reasons, the values of the unknown in each of the following.

(e) OQP is a tangent to circle RSQ. $\hat{R} = 4m - 70^{\circ}$, $R\hat{Q}P = s$, $O\hat{Q}S = m + 20^{\circ}$, $\hat{S} = 4m$ Find the values, with reasons, of m and s. (5)

(a)In the diagram below, you are given a circle center O. A line is drawn from O perpendicular to			
a chord AB. Complete the statements below to prove the theorem which states that this line			
will bisect the chord AB.	(4)		
Given: OM is perpindicular to AB			
Required to prove:			
Proof:			
Join			
In $\triangle OMB$ and $\triangle OMA$			
1			
2			
3			
$\therefore \ \Delta OMB \equiv \Delta \ OMA$			

Useful formulae

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$y = mx + c$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$M\left(\frac{x_1+x_2}{2} ; \frac{y_1+y_2}{2}\right)$$

$$y - y_1 = m(x - x_1)$$

$$m = \tan \theta$$