

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2017

GRADE 11

MATHEMATICS

PAPER 2

MEMORANDUM

10 pages

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS Paper 2

MEMORANDUM

INSTRUCTIONS AND INFORMATION

- A Accuracy
- CA Consistent Accuracy
- S-Statement
- R-Reason
- $SR-Statement \ / \ Reason$

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate CROSSED OUT an answer and did not redo it, mark the crossed out answer.
- Consistent accuracy applies to ALL aspects of the memorandum. Stop marking at the second calculation error.
- Assuming values/answers in order to solve a problem is UNACCEPTABLE.

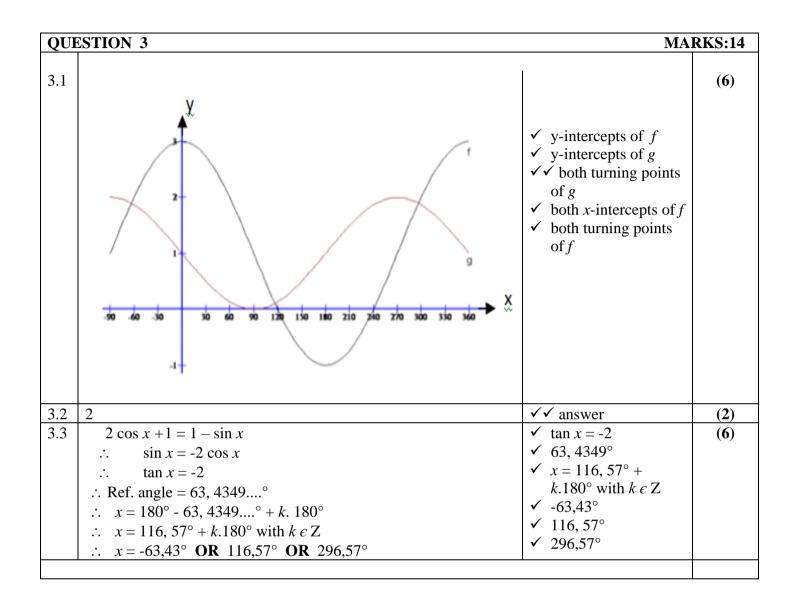
Mathematics Paper 2 GRADE 11

QUESTION 1			ARKS: 25
1.1	$M_{\rm MR} = \frac{6-0}{4-0}$	✓ sub. into the gradient formula	(3)
	$M_{\rm MR} = \frac{6}{4} = \frac{3}{2}$	\checkmark gradient of line MR	
	equation of line MR is: $y = \frac{3}{2}x$	\checkmark equation of line MR	
1.2	y - 5x + 14 = 0 y = 5x - 14 MS PR $\therefore m_{PR} = 5$ equation of line PR:	$\checkmark m_{\rm MS} = 5$ $\checkmark m_{\rm PR} = 5$	(4)
	$y - y_1 = m(x - x_1) y - 4 = 5(x + 2) y = 5x + 14$	✓ sub. (-2 ; 4) ✓ answer	
1.3	$m_{PR} = 5$ $\therefore \tan \alpha = 5$ $\alpha = 78,69^{\circ}$ $m_{MR} = \frac{3}{2}$ $\tan \beta = \frac{3}{2}$ $\beta = 56,31^{\circ}$ $\therefore \theta = \alpha - \beta$ $\theta = 22,38^{\circ}$	$\sqrt{\tan \alpha} = 5$ $\sqrt{78,69^{\circ}}$ $\sqrt{56,31^{\circ}}$ $ \theta = (\alpha - \beta)(\text{sum of angles of } \Delta)$ $\sqrt{22,38^{\circ}}$	(5)
1.4	$y = \frac{3}{2}x \text{ and } y = 5x + 14$ $5x + 14 = \frac{3}{2}x$ 10x + 28 = 3x 7x = -28 x = -4 y = -6 R(-4; -6)	✓ equating $5x + 14 = \frac{3}{2}x$ ✓ $7x = -28$ ✓ $x = -4$ ✓ $y = -6$	(4)

1.5	$d_{MR} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(4+4)^2 + (6+6)^2}$ = $\sqrt{64 + 144}$ = $4\sqrt{13}$	✓ sub. into dist. formula ✓ answer	(2)
1.6	$d_{PR} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(-4 + 2)^2 + (-6 - 4)^2}$ = $\sqrt{104}$ or $2\sqrt{26}$ Area of ΔPMR = $\frac{1}{2}$ PR. MR. sin θ = $\frac{1}{2}2\sqrt{26}.4\sqrt{13}. \sin 22,38^\circ$ OR $\frac{1}{2}\sqrt{104}.4\sqrt{13}. \sin 22,38^\circ$ = 28 units ²	✓ sub. into dist. formula ✓ $\sqrt{104}$ OR $2\sqrt{26}$ ✓ $\frac{1}{2}2\sqrt{26}.4\sqrt{13}.\sin 22,38^{\circ}$ OR $\frac{1}{2}\sqrt{104}.4\sqrt{13}.\sin 22,38^{\circ}$ (✓ rounding-off) answer ✓	(5)
1.7	S(2;-4)	$\checkmark x = 2$ $\checkmark y = -4$	(2)

QU	QUESTION 2 MARKS:			KS: 26
2.1	$y^{2} = r^{2} - x^{2}$ $\therefore y^{2} = (25)^{2} - (-7)^{2}$ $\therefore y^{2} = 576$ $\therefore y = -24$ $\therefore 14 \tan \theta = 14 \left(\frac{-24}{-7}\right)$ = 48	25 (-7: y)	✓ diagram correct in correct quad. ✓ $y = -24$ ✓ $\tan \theta = \frac{-24}{-7}$ ✓ answer	(4)
2.2	$\frac{\cos(90^{\circ} + x).\sin(180^{\circ} + x)}{\tan 225^{\circ} - \cos^2(-x)} = \frac{(-\sin x)(-\sin x)}{\tan 45^{\circ} - \cos^2 x} = \frac{\sin^2 x}{1 - \cos^2 x} = \frac{\sin^2 x}{\sin^2 x} = \frac{\sin^2 x}{\sin^2 x} = \frac{1}{1}$		✓ (-sinx) (-sinx) ✓ tan 45° ✓ $\cos^2 x$ ✓ tan 45° = 1 ✓ $1 - \cos^2 x = \sin^2 x$ ✓ answer	(6)

2.3	$2\cos 2\theta = -0.44$ $\therefore \cos 2\theta = -0.22$ $\therefore \text{ Ref. angle} = 77,2909 \dots^{\circ}$ $2\theta = 180^{\circ} - 77,2909 \dots^{\circ} + k.360^{\circ}$ $\therefore \qquad \theta = 51,35^{\circ} + k.180, k \in \mathbb{Z} \text{ or}$ $2\theta = 180^{\circ} + 77,2909 \dots^{\circ} + k.360^{\circ}$ $\therefore \qquad \theta = 128,65^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	$ ✓ \cos 2\theta = -0.22 ✓ 77,2909° ✓ 2θ = 180° - 77,2909° + k.360° ✓ θ = 51,35° + k.180, k ∈ Z ✓ 2θ = 180° + 77,2909° + k.360° ✓ ∴ θ = 128,65° + k.180°, k ∈ Z $	(6)
2.4	$\therefore LHS: \frac{\tan \theta - \sin \theta}{1 - \cos \theta}$ $= \frac{\frac{\sin \theta}{\cos \theta} - \frac{\sin \theta}{1}}{1 - \cos \theta}$ $= \frac{\frac{\sin \theta - \sin \theta \cdot \cos \theta}{1 - \cos \theta}}{\frac{\cos \theta}{1 - \cos \theta}}$ $= \frac{\sin \theta (1 - \cos \theta)}{\cos \theta} \times \frac{1}{1 - \cos \theta}$ $= \frac{\sin \theta}{\cos \theta}$ $= \tan \theta$	$\sqrt{\tan \theta} = \frac{\sin \theta}{\cos \theta}$ $\sqrt{\frac{\sin \theta - \sin \theta \cdot \cos \theta}{\cos \theta}}$ $\sqrt{\sin \theta (1 - \cos \theta)}$ $\sqrt{\times \frac{1}{1 - \cos \theta}}$ $\sqrt{\frac{\sin \theta}{\cos \theta}} = \tan \theta$	(5)
2.5	$\begin{aligned} \alpha &= 90^{\circ} - \beta \\ \therefore \frac{\cos 20^{\circ}}{\sin 70^{\circ}} - \frac{\sin (90^{\circ} - \beta)}{\sin (90^{\circ} - \beta)} \\ &= \frac{\sin 70^{\circ}}{\sin 70^{\circ}} - 1 \\ &= 1 - 1 \\ &= 0 \end{aligned}$	$\sqrt[4]{\cos 20^{\circ}}$ $\sqrt[4]{\sin \alpha} = \sin(90^{\circ} - \beta)$ $\sqrt[4]{\cos 20^{\circ}} = \sin 70^{\circ}$ $\sqrt[4]{1 - 1}$ $\sqrt[4]{answer}$	(5)



	QUESTION 4	MARKS: 13	
4.1	Construction: Join PO and OR In $\triangle POQ$ and $\triangle ROQ$ 1) $OQ = OQ$ common 2) $PO = OR$ radii 3) $\hat{Q}_1 = \hat{Q}_2 = 90^\circ$ given $\therefore \triangle POQ \equiv \triangle ROQ 90^\circ$ HS $\therefore PQ = RQ$	✓ construction (radii, OP and OR) ✓ SR ie (PO = OR radii) ✓ S ie ($\hat{Q}_1 = \hat{Q}_2 = 90^\circ$) ✓ S R ✓ PQ = RQ (5)	5)
4.2.1	$\hat{A}_1 = 90^\circ$ line from centre to midpt. of chord $\hat{B} = 180^\circ - (\hat{O}_1 + \hat{A}_1)$ sum of angles of a Δ = 50°	✓ S R ✓ answer (2)	3)

4.2.2	$\hat{C} = 90^{\circ}$ angle in a semi-circle $\hat{D} = 180^{\circ} - (\hat{C} + \hat{B})$ sum of angles of Δ $= 40^{\circ}$	✓ S R ✓ answer (2)
4.2.3	$BD = \sqrt{CD^2 + BC^2}$ Th. of Pyth. = $\sqrt{40^2 + 30^2}$ = 50 $BO = \frac{1}{2}BD$ radii = 25	✓ BD = 50 ✓ BO = 25
	$OA = \frac{1}{2}CDMidpt. Th.$ = 20 AE = OE - OA = 25 - 20 = 5 units	✓ SR ie (OA = 20 Midpt.Th.) ✓ AE = 5 (4)

	QUESTION 5	MARKS: 10
5.1	$\hat{\mathbf{L}} = \hat{\mathbf{J}}_1 = x$ angles opp. = sides $\hat{\mathbf{N}}_1 = \hat{\mathbf{L}} = x$ = chords subtend = angles	$\checkmark S R$ $\checkmark S$ $\checkmark R$ (3)
5.2	$\hat{\mathbf{M}} = \hat{\mathbf{J}}_3 = y \dots \text{ angles opp.} = \text{sides}$ $\hat{\mathbf{K}}_1 = \hat{\mathbf{M}} = y \dots \text{ chords subtend} = \text{ angles}$ $\hat{\mathbf{Q}}_2 = \hat{\mathbf{K}}_1 + \hat{\mathbf{J}}_1 \dots \text{ ext. angle of } \Delta$ $= x + y$ $\hat{\mathbf{P}}_2 = \hat{\mathbf{N}}_1 + \hat{\mathbf{J}}_3 \dots \text{ ext. angle of } \Delta$ $= x + y$ $\therefore \qquad \hat{\mathbf{Q}}_2 = \hat{\mathbf{P}}_2 = x + y$	$\checkmark S R \checkmark S R \checkmark S R \checkmark S R (4)$
5.3	$\hat{P}_4 = \hat{P}_2 \dots$ vert. opp. angles $\hat{Q}_4 = \hat{Q}_2 \dots$ vert. opp. angles but $\hat{Q}_2 = \hat{P}_2 \dots$ proved in Q5.2 $\therefore \hat{P}_4 = \hat{Q}_4$ $\therefore JQ = JP \dots$ sides opp = angles OR isos. Δ	$\checkmark \mathbf{S} \mathbf{R} \text{for} \hat{\mathbf{P}}_4 = \hat{\mathbf{P}}_2 \mathbf{O} \mathbf{R}$ $\hat{\mathbf{Q}}_4 = \hat{\mathbf{Q}}_2$ $\checkmark \hat{\mathbf{P}}_4 = \hat{\mathbf{Q}}_4$ $\checkmark \mathbf{R} \tag{3}$

	QUESTION 6	MARKS: 12
6.1	$\hat{\mathbf{K}}_{2} = \hat{\mathbf{T}}_{1} \dots \text{ angles opp.} = \text{sides } \mathbf{OR} \text{ equal radii}$ $\hat{\mathbf{T}}_{1} = \hat{\mathbf{C}} \dots \text{ angles in same segment}$ $\therefore \qquad \hat{\mathbf{K}}_{2} = \hat{\mathbf{C}}$	$ \vec{V} \leq R \vec{V} = \hat{C} \vec{V} R $ (3)
6.2	$\hat{T}_2 = \hat{A}$ angles opp. = sides OR equal radii $P_2 = \hat{T}_2 + \hat{A}$ ext. angle of Δ $= 2 \hat{T}_2$ $\hat{K}_1 = \hat{P}_2$ angles in same segment $\hat{K}_1 = 2\hat{T}_2$	$\checkmark S R$ $\checkmark S R$ $\checkmark \hat{K}_1 = \hat{P}_2$ $\checkmark R$ (4)
6.3	$\hat{P}_{4} = 2\hat{T} \dots \text{ angle at centre} = \text{twice angle at circumference}$ $\hat{T} = \hat{T}_{1} + \hat{T}_{2}$ $\hat{T}_{1} = \hat{C} \dots \text{ angles in same segment}$ $\hat{T}_{2} = \frac{1}{2}\hat{K}_{1} \dots \text{ proved in Q6.2}$ $\hat{P}_{4} = 2(\hat{C} + \frac{1}{2}\hat{K}_{1})$ $= 2\hat{C} + \hat{K}_{1})$	$\checkmark \hat{P}_{4} = 2\hat{T}$ $\checkmark R$ $\checkmark SR$ $\checkmark \hat{T}_{2} = \frac{1}{2}\hat{K}_{1}$ $\checkmark \hat{P}_{4} = 2(\hat{C} + \frac{1}{2}\hat{K}_{1})$ (5)
		TOTAL: 100