

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

JUNE 2018

GRADE 11

MATHEMATICS

PAPER 2

MEMORANDUM

9 Pages

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS Paper 2

MEMORANDUM

INSTRUCTIONS AND INFORMATION:

- A Accuracy
- C.A. Consistent Accuracy
- S Statement
- R Reason
- SR Statement and Reason

NOTE:

- If a candidate answered a question **TWICE**, mark only the first attempt.
- If a candidate **CROSSED OUT** an answer and did not redo it, mark the crossedout answer.
- Consistent accurancy applies to **ALL** aspects of the memorandum.
- Assuming values / answers in order to solve a problem is UNACCEPTABLE.

	MATHEMATICS Paper 2	
MEMORANDOW	Grade 11	

	QUESTION 1	[25]
1.1	$m_{BC} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-5 - 3}{7 - 5}$ $= -4$	 ✓ subst. in corr. formula ✓ answer (2)
1.2	$F(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2})$ F($\frac{-1+7}{2}; \frac{1+(-5)}{2}$) F(3; -2)	 ✓ subst. into correct formula ✓ answer (2)
1.3	$m_{BF} = \frac{3 - (-2)}{5 - 3}$ = $\frac{5}{2}$ $(y - 3) = \frac{5}{2}(x - 5)$ $y = \frac{5}{2}x - \frac{19}{2}$	✓ $m_{BF} = \frac{5}{2}$ ✓ corr. sub. in str. line eq. ✓ answer (3)
1.4	$\tan \theta = m_{BF}$ $\tan \theta = \frac{5}{2}$ $\theta = 68,2^{\circ}$ $\ln \alpha = -4$ Ref. $\downarrow =$ $75,9^{\circ}$ $\alpha =$ $80^{\circ} - 75,9^{\circ}$ $\alpha = 104,1^{\circ}$ $F\hat{B}C = \alpha - \theta \qquad \text{mext.} \qquad \downarrow \text{ of } \Delta$ $= 104,1^{\circ} - 68,2^{\circ}$ $= 35,9^{\circ}$	$\checkmark \tan \theta = \frac{5}{2}$ $\checkmark \theta = 68,2^{\circ}$ $\checkmark \text{Ref. } \bot = 75,9^{\circ}$ $\checkmark \propto = 104,1^{\circ}$ $\checkmark \text{ answer}$ (5)

	MATHEMATICS Paper 2	
WEWORANDOW	Grade 11	

1.5		\sqrt{m} \times m $ -1$
	m_{AF} × m_{FK} = -1	$m_{AF} \times m_{FK} - 1$
	$\frac{1 - (-2)}{-1 - 3} \times \frac{p - (-2)}{6 - 3} = -1$	$\sqrt{\frac{3}{-4}}$
	$\frac{3}{-4} \times \frac{p+2}{6-3} = -1$	$\sqrt{\frac{p+2}{6-3}}$
	$\frac{p+2}{3} = \frac{4}{3}$	
	p = 2	✓ answer (4)
1.6	T(1;-7)	$\checkmark x = 1$ $\checkmark y = -7$
		(2)
1.7	Midpt. of BT $(\frac{5+1}{2}; \frac{3+(-7)}{2})$	✓ corr. sub. into formula
	(3;-2) Also the midpt. of AC	✓ conclusion (2)
1.8	$AB = \sqrt{(5 - (-1))^2 + (3 - 1)^2}$ = $2\sqrt{10}$ BC = $\sqrt{(-5 - 3)^2 + (7 - 5)^2}$ = $2\sqrt{17}$	✓ corr. sub. in dist. formula ✓ AB = $2\sqrt{10}$ ✓ BC = $2\sqrt{17}$
	Perimeter of ABCT = $2(2\sqrt{10} \times 2\sqrt{17})$ = 29,14	✓ Perimeter of ABCT = $29,14$
	Per of LMNO = $2 \times 29,14$ = 58,28	✓ answer (5)

MATHEMATICS Paper 2	
Grade 11	

	QUESTION 2	[26]
2.1.1	$k = -\sqrt{5^2 - 3^2}$ Th. of Pyth. k = -4	✓ any relevant version of Pyth. ✓ answer (2)
2.1.2	$\tan \alpha = \frac{3}{-4}$	✓ answer (1)
2.1.3	$cos(90^{\circ} + \alpha)$ = - sin α = - $\frac{3}{5}$	$\checkmark -\sin\alpha$ $\checkmark \text{ answer} $ (2)
2.1.4	$\tan \alpha = \frac{3}{-4}$ Ref. $\perp = 36,87^{\circ}$ $\alpha = 143,13^{\circ}$	✓ Ref. $_ = 36,87^{\circ}$ ✓ 143,13° (2)
2.2	$\cos A = \frac{3}{7}$ $y_A = 2\sqrt{10} \dots \text{Th of Pyth.}$ $B(2\sqrt{10}; 3)$ $7 \cos B - 3 \tan A$ $= 7 \cos(90^\circ - A) - 3 \tan A$ $= 7 \sin A - 3 \tan A$ $= 7 \left(\frac{2\sqrt{10}}{7}\right) - 3 \left(\frac{2\sqrt{10}}{3}\right)$ $= 0$	✓ $y_A = 2\sqrt{10}$ ✓ $B(2\sqrt{10}; 3)$ ✓ corr. sub. ✓ answer (4)

MEMORANDUM	MATHEMATICS Paper 2
	Grade 11

2.3	sin 210°.cos 790°.tan(-330°)	
	sin 160°	
	$sin(180^{\circ} + 30^{\circ}) \times cos(720^{\circ} + 70^{\circ}) \times - tan(330^{\circ})$	
	sin(90° + 70°)	
	$-\sin 30^\circ \times \cos 70^\circ \times -\tan(360^\circ - 330^\circ)$	
	cos 70°	$\sqrt{-\sin 30^\circ}$
	$1 \times 200, 70^{\circ} \times 10^{\circ} 20^{\circ}$	$\checkmark \cos 70^{\circ}$
	$\frac{-\frac{1}{2} \times \cos 70^{\circ} \times \tan 30^{\circ}}{\cos 70^{\circ}}$	1 ton 20°
		• tall 50
	$-\frac{1}{2} \times \frac{\sqrt{3}}{3}$	
	$-\frac{\sqrt{3}}{2}$	
	6	✓ answer (5)
2.4	LHS = $\frac{\sin x - \sin x \cos x}{\cos x + \sin^2 x}$	
		$\checkmark \sin x(1 - \cos x)$
	$=\frac{\sin x(1-\cos x)}{\cos x - (1-\sin^2 x)}$	
	$\sin x(1 - \cos x)$	
	$=\frac{1}{\cos x - \cos^2 x}$	$\checkmark (1 - \sin^2 x) = \cos^2 x$
	$=\frac{\sin x(1-\cos x)}{\cos x(1-\cos x)}$	$\checkmark \cos x(1 - \cos x)$
	$\frac{\cos x(1 - \cos x)}{\sin x}$	
	$\frac{-}{\cos x}$ = tan r = RHS	$\sqrt{\frac{\sin x}{\cos x}}$
		(4)
2.5	$\sin 2\theta = \cos(\theta + 20^{\circ})$	
2.3	$\sin 2\theta = \cos(\theta + 3\theta')$ $\sin 2\theta = \sin(90^\circ - (\theta + 30^\circ))$	
	$\sin 2\theta = \sin(60^\circ - \theta)$	$\checkmark \sin(60^\circ - \theta)$
	$\theta = 20^{\circ} + 120^{\circ}k$	• K EZ
		$\checkmark \theta = 20^{\circ} + 120^{\circ}k$
	$2\theta = 180^{\circ} - (60^{\circ} - \theta) + 360^{\circ}k$ $\theta = 120^{\circ} + 360^{\circ}k$	
		$\checkmark \theta = 120^\circ + 360^\circ k$
	$\theta = \{-340^\circ; -240^\circ; -220^\circ; -100^\circ; 20^\circ\}$	$\checkmark \checkmark$ all values correct
		OR
		▼ 3 or 4 values correct
		(6)

MEMORANDUM	MATHEMATICS Paper 2	
	Grade 11	

	QUESTION 3	[14]
3.1	y 1 $(0, 1)(45, 1)$ 1 $(0, 1)(45, 1)$ 1 $(-45, 0)$ $(135(095, 0)x$ -90 -30 -30 0 30 60 90 120 150180° 90 -01 -1 (90, -1) 90 -01 -1 (90, -1)	 ✓ shape of f ✓ corr. turning points of f ✓ corr. x and y intercepts of f ✓ shape of g ✓ corr.turning points of g ✓ corr. x and y intercepts of g (6)
3.2.1	$y \in [-1; 1]$	$\begin{array}{c} \checkmark -1 \\ \checkmark 1 \end{array} \tag{2}$
3.2.2	360°	✓ answer (1)
3.2.3	3	✓ answer (1)
3.3	$45^\circ \le x \le 180^\circ$	✓45°; 180° ✓ corr. brackets / inequalities (2)
3.4	$sin(x + 15^{\circ}) + 1$	$\begin{array}{c} (2) \\ \checkmark \sin(x+15^{\circ}) \\ \checkmark +1 \end{array} \tag{2}$

	MATHEMATICS Paper 2
WEWORANDOW	Grade 11

QUEST	ION 4	[12]
4.1.1	Perpendicular	\checkmark answer (1)
4.1.2	Twice	\checkmark answer (1)
4.2.1	$B\hat{C}A = 90^{\circ}$ (\angle in the semi-circle)	$\begin{array}{c c} \checkmark & S \\ \checkmark & R \\ \end{array} $ (2)
(a)	AC = $\sqrt{10^2 - 8^2}$ (Pythagoras Th.) AC = $\sqrt{36}$ AC = 6 \therefore AM = 3 (line from centre of circle \perp to chord bisects chord OR midpoint theorem)	 ✓ diameter =10 ✓ AC = 6 ✓ AM = 3 ✓ Statement (line from centre of circle ⊥ to chord bisects chord OR midpoint theorem)
(b)	OM = $\sqrt{5^2 - 3^2}$ (Phyth.Th. OR Midpt.Th.) OM = 4 Area \triangle AOM : Area \triangle ABC $\frac{1}{2} \cdot 4 \cdot 3 : \frac{1}{2} \cdot 8 \cdot 6$ 6 : 24 1 : 4	 ✓ OM = 4 ✓ subst. for areas of Δ AOM and Δ ABC ✓ area Δ AOM = 6 and area Δ ABC = 24 ✓ both correct simplified answers (4)

	MATHEMATICS Paper 2	
WEWORANDOW	Grade 11	

QUESTION 5		[4]		
5.1	$\hat{A}_{.1} + \hat{A}_2 = \hat{F}_1$ (angles in the same segment) But $\hat{F}_1 = \hat{C}_1$	✓ ✓	R R	
	$ \therefore \hat{A}_{.1} + \hat{A}_2 = \hat{C}_1 \text{ (angles opp. = sides)} $ $ \therefore FC \parallel AB. $			
				(2)
5.2	$\hat{B}_{.1} + \hat{B}_2 = \hat{C}_1$ (angles in the same segment)	✓	R	
	$\therefore \ \hat{B}_{.1} + \hat{B}_2 = \hat{A}_{.1} + \hat{A}_2$	✓	$\therefore \hat{B}_1 + \hat{B}_2 =$	
	$\therefore \Delta ABE$ isosceles		$\hat{A}_{.1} + \hat{A}_2$	(2)

QUESTIO	N 6	[19]
6.1	$A\hat{B}C = 104^{\circ}$ (Co-int \angle 's OC AB) \therefore Reflex $A\hat{O}C = 2B$ $= 208^{\circ}$ (\angle at centre twice \angle at circumf.) \therefore Obtuse $A\hat{O}C = 152^{\circ}$ \therefore $x = 28^{\circ}$ (co-int \angle 's OC AB)	✓ $A\hat{B}C = 104^{\circ}$ ✓ Reflex $A\hat{O}C = 208^{\circ}$
		✓ obtuse $A\hat{O}C = 152^{\circ}$ ✓ $x = 28^{\circ}$ ✓ R (5)
6.2.1.	$\hat{R}_1 = x$ $(\angle$ ' s opp = sides/ radii) $\hat{O}_1 = 180^\circ - 2x$ (sum of \angle s in \triangle QRO) $\hat{P}_1 = 90^\circ - x$ (\angle at centre = twice \angle at circumf.)	✓ S ✓ R(∠' s opp = sides/radii) ✓ $\hat{O}_1 = 180^\circ - 2x$ ✓ R(sum of∠ s in ΔQRO) ✓ $\hat{P}_1 = 90^\circ - x$ ✓ S ✓ R(∠ at centre = twice ∠ at circumf.) (7)
6.2.2.	$PQ = QR$ (given) $Q\hat{R}P = 90^{\circ} - x$ (\angle opp = sides in Δ) $P\hat{Q}R = 2x$ (\angle sum in ΔPQR) $x + \hat{Q}_2 = 2x$ $\therefore \hat{Q}_2 = x$ TQ bisects PQR	✓ S (PQ = QR) ✓ S (Q \hat{R} P = 90° - x) ✓ R (∠ opp = sides in Δ) ✓ S (P \hat{Q} R = 2x) ✓ (∠ sum in ΔPQR) ✓ x + \hat{Q}_2 = 2x ✓ \hat{Q}_2 = x (7)
	•	TOTAL : 100