Memo

Mathematics Paper 2

FORM 4

July 2018

TIME: 2 hours TOTAL: 100 marks

Examiner: Miss M. Eastes Moderated: Mrs. Gunning, Mrs. Algie

NAME:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTIONS.

- This question paper consists of 24 pages. This includes an information sheet. Please check that your question paper is complete.
- Answer all questions on this question paper.
- Read and answer all questions carefully.
- It is in your own interest to write legibly and to present your work neatly.
- All necessary working which you have used in determining your answers must be clearly shown.
- Approved non-programmable calculators may be used except where otherwise stated. Where necessary give answers correct to 2 decimal places unless otherwise stated.
- Ensure that your calculator is in DEGREE mode.
- Diagrams have not necessarily been drawn to scale.

Questions	1	2	3	4	5	6
Out of	9	11	11	15	6	9
Mark					- 4	
Question	9	10	11	12	13	TOTAL
Out of	6	7	9	12	5	100
					18 70 50	1

SECTION A QUESTION 1

The equations of the following lines are given:

AB	$y = \frac{1}{2}x$	~
CD	y = 2	
EF	3y - 2x - 3	= 0 🗸
GH	3y + 2x - 6	= 0 🗸
JK	y = -2x + 4	
LM	$x = \pm 2$	~

Choose from the above list a line which will satisfy the conditions in each of the following cases. Write only the question number and the letters naming the line. Each line may only be used once. Show all calculations used to arrive at your answer.

1.1 The line cuts the x-axis at (3; 0).	(2)
34+2x-6=0 M	
3(0) +2x-6=0 MAN GHV 3(0) +2x-6=0 MAN GHV 2x=6=0 MAN GHV	
1.2 The line is parallel to the line $y = \frac{2}{3}x + 3$	(2)
3y = -2x + 6 $3 = 2x + 3$ EF.	
1.3 The line has a gradient of zero.	(1)
LAB.	
1.4 The line represents all points 2 units from the y-axis.	(1)
1.5 The line has an angle of inclination of 116,6° $ \frac{1}{3} = \frac{1}{2} \text{Land} = -2 \text{TK} $ $ \frac{3}{3} = \frac{1}{2} \text{Land} = \frac{1}{2} Land$	(2)
1.6 The line is perpendicular to line JK.	(1)

In the diagram below, the coordinates of A(4; 4), B(12; -4) and C(-1; -4) are given.

AC // DE and CEB is a straight line.

D is the midpoint of AB.

Determine:

2.1 the length of AB. Give answer correct to one decimal digit.

(2)

$$= \int 8^{2} + (-8)^{2}$$

$$= 11.3$$

2.2 the coordinates of D, the midpoint of AB.

(2)

2.3 the equation of the line DE.

(4)

$$\frac{4-(-1)}{5}m$$

$$y = 8x + C$$

$$0 = \frac{8}{5}(8) + C \sqrt{ca}$$
 $0 = 64 + C$
 5

3.2 Given the points P(1;3), Q(3;2) and R(-1;-1):

Determine the equation of the straight line through R parallel to PQ. (4) $PQ = \frac{3}{1-3}$ $M = \frac{2}{9}$

3.3 Consider the points: D(-1; 1), $E(t; t^2)$ and F(1; 2t-1): Show that these 3 points are collinear.

CP. (5)

 $M_{ef} = \frac{t^2 - (z_{t-1})}{t} \qquad M_{ef} = \frac{t^2 - 1}{t} \qquad M_{ef} = \frac{$

A(1;5), B(4.3) and C(0;-3) are the vertices of the triangle.

4.1 Determine, using analytical methods, the coordinates of D if ABCD is a parallelogram.

(S)

 $\frac{X+4-1}{2} = 1$ $\frac{X+4-1}{2} = 1$ $\frac{X+4-1}{2} = 1$ $\frac{X+3-2}{2} = 1$

4.2 If the distance between C and F(8;p) is 12 units, find the value(s) of p	1
(to the nearest integer). (5)	
C(0;-3)	•
F(8ip) . Vm	
$\sqrt{(8-0)^2+(p+3)^2}=12^{6}$	a
82+p2+6p+9=144V	29
	29
p2+6p-71=0 Via	
$p=6$ or $p=-12$ \sqrt{ca}	
	`
4.3 Find the size of $A\hat{C}B$ in Δ ABC YA large deat of $A\hat{C}B$ in Δ ABC YA)
MBC = 3-C-3) MACN= 8)
14-0 / / M 1 M	
= 6 MAC =8 = 8	
4	
= 3 Lan B = 8	
B=82,87° V	
$\tan 0 = 3$	
2	
· 0=563	
OBC = 56,3 (vertically opplis)	
ACB = 82,87 - 56,3 /ArtCo	I
- 76 S70 (EXEL)	

QUESTION 5 And the bare

The diagonals of rectangle STVW are equal in length and bisect each other at P.

Calculate the co-ordinates of T and W.

l'm
$P\left(\frac{-1+3}{2}; \frac{-1+2}{2}\right) + \sqrt{3} $ $SU = \sqrt{(3+1)^2 + (2+1)^2}$
$= \sqrt{4^2 + 3^2}$
P(1/2) - J16+9
Tw = Jam (diag of rectangles) of
*)
T (1; 1/3/2) Va
$W(1;-2)$ V_{cq}

6] PS

A, B, C, D, and E, are points on the circumference of a circle with centre O. TBS is a tangent to the circle at B. DB and AC intersect at X. $\hat{A}_1 = 60^0$ and $\hat{C}_2 = 40^0$

Give the reasons to the following statements made.

6.1 $\hat{D}_1 = 60^\circ$ L'S in same segment (1)

6.2 $\hat{O}_2 = 120^\circ$ Lat certe (1)

6.3 $\hat{B}_2 + \hat{B}_3 + \hat{B}_4 = 90^{\circ}$ [in Semi 6

6.4 $\hat{C}_1 = 30^{\circ}$

6.5	$\hat{B}_1 = 30^{\circ}$	1	1	[]	()
		tan	chord	fleorem	()

6.6
$$\hat{B}_4 = 30^{\circ}$$

$$\frac{\hat{E}=140^{\circ}}{\text{of } cyolic and } (1)$$

6.8
$$\hat{B}_2 = 40^{\circ}$$
 LS in saneggyment / app ('s of g. 9 (1))

6.9
$$X_3 = 80^{\circ}$$
 int (5 of () [9]

O is the centre of the circle, and COT \perp XY.

If OC = 10 and XY = 12,

Find the length of CT.

			(C
OV = GV = IO	(-1)		(6)
0x = 0y = (0	(radii)	*	
XT = 6 Va	Clive to from	centre	te chest)

BE is the diameter. BD = DF. BCF and ADF are straight lines. $\hat{B}_2 = 15^{\circ}$ and $\hat{F} = 10^{\circ}$. Calculate:

8.1	$\hat{D}_{3+}\hat{D}_{4} = 90 (L \text{ in semi } 0) (3)$	RH
	&= 75° CIME US OF U) W9	_
	A=750 (L's in same segment) ug	

- 8.2 Ĉ1 Ĉ1 = 105° (op is of cyclic quad) va
- 8.3 \hat{D}_4 $\hat{B}_3 = 10^\circ$ (isos 0) \hat{C}_4 (3) RF $\frac{\hat{D}_3 = 76^\circ \text{ (Exct cof 0) } \text{ (a}}{\text{ (a)}}$

D4 = 90 -200	
= 70° Vca	

[7]

FE is a tangent to the circle with centre O. D and F are joined so that EG = GF.

9.1	If $\hat{E}_3 = p$, name,	with reasons, two other angles which are equal to p.	
	^	0	

(2)

	(isas O) Va	
DIEP	(tachard the)	

9.2 Express DÔE in terms of p.

9.3 Express OÊD in terms of p.

$$0 = 0p = (radii) va$$

$$C_1 = 0 + pz = (isas a) va$$

$$C_1 = 180 - 4p = (int is of a) va$$

$$C_1 = 98 - 2p = va$$

[9]

In the diagram below, ΔABC is drawn in the circle.

TA and TB are tangents to the circle.

The straight line THK is parallel to AC with H on BA and K on BC. AK is drawn.

Let $\hat{A}_3 = x$

10.1 Prove that $\hat{K}_3 = x$.

10.2 Prove that AKBT is a cylic quadrilateral.

10.3 Prove that TK bisects $A\widehat{K}B$.

10.4 Prove that TA is a tangent to the circle passing through the points A, K and H.

CD is a tangent at D to the circle with centre O. CD = 10 units. AC = 25 units. If r is the radius, show that r = 10,5 units.

CD is a tangent at D to the circle with centre O . $CD = 10$ units. As $CD = 10$ units. (if r is the radius, show that $r = 10,5$ units.	5) PS
D=96° (tan to rad) Va	
r2+102 = (25-r)2 tm(Pything	Jug
0 = -501 + 525	
$\frac{0}{50r} = 525$	U —
r = 10.5	