

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

Solve for *x* in each of the following: 1.1

$$1.1.1 \quad x(2x-5) = 0 \tag{2}$$

1.1.2 $2x^2 - x - 7 = 0$ (correct to TWO decimal places) (3)

1.1.3
$$x - \sqrt{2x - 1} = 2$$
 (5)

$$1.1.4 \quad 3x^2 + 7x - 6 \ge 0 \tag{3}$$

1.1.5
$$3^{x}\left(x+\frac{1}{3}\right) < 0$$
 (3)

$$x - 4y = 5$$
 and $x^2 - 2xy - 3y^2 = 0$ (6)
[22]

QUESTION 2

Simplify fully, WITHOUT using a calculator: 2.1

$$2.1.1 \quad \left(\frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2}\right)^2 \tag{2}$$

2.1.2
$$\frac{\sqrt{72}}{\sqrt{8} + \sqrt{98}}$$
 (3)

2.1.3
$$\frac{6(3^{n+1})}{3^{n(n-1)}} \div \frac{2.9^{n+1}}{3^{n^2-1}}$$
 (4)

2.2. Solve for *x*:

$$3^x.5 + 3^{x+1} = 216 \tag{3}$$

2.3 If
$$6^x = 5$$
, calculate the value of $\frac{18^x}{2^{-x}}$ (3)

[15] Please turn over 4 NSC

QUESTION 3

3.1	Write down the next TWO terms of the quadratic sequence:	
	5 ; 10; 17 ;	(2)

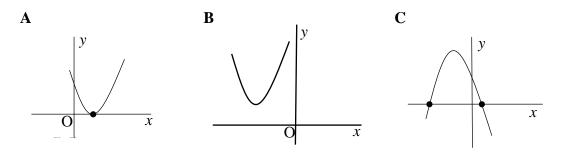
- 3.2 The first four terms of a quadratic sequence are (x-3); (-2x+2); (3x + 11) and (4x + 12). Calculate the value of *x*. (4)
- 3.3 Consider the quadratic pattern: 3;7; 13; 21;...
 - 3.3.1 Determine the n^{th} term (T_n) of the pattern in the form $T_n = an^2 + bn + c$. (4)
 - 3.3.2 Which term of the pattern will be the first to exceed 463? (4)
 - 3.3.3 Between which TWO consecutive terms in the sequence is the first difference equal to 102? (4)
 - 3.3.4 Consider the number pattern:

Row 1:	3			
Row 2:	5	7		
Row 3:	9	11	13	
Row 4:	15	17	19	21

Calculate the number at the end of the 60 th row.	(3))

3.4 The following is a linear pattern: $6; p; q; r; 42; \dots$

Determine the values of p, q and r .	(4)
--	-----

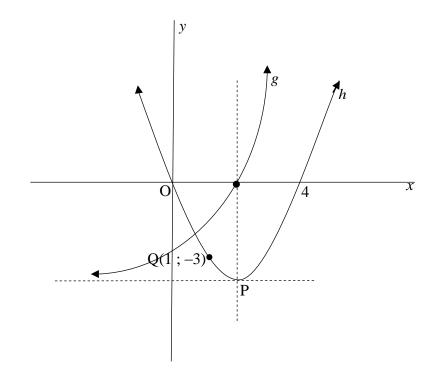

[25]

The hyperbola, f , is defined by f	$(x) = \frac{3}{x-2} + 1.$
--	----------------------------

		[10]
4.5	Write down the domain of h, if $h(x) = f(x-2)$.	(2)
4.4	Sketch the graph of f , showing all intercepts with the axes and any asymptotes.	(3)
4.3	Determine the <i>x</i> -intercept of <i>f</i> .	(2)
4.2	Write down the y-intercept of f.	(1)
4.1	Write down the equations of the asymptotes of f .	(2)

QUESTION 5

5.1 The following are graphs defined by $y = ax^2 + bx + c$.


Match each of the following statements below with an associated graph above. You must only write down the letter of the corresponding graph.

$uc > 0 \tag{1}$
zc > 0 (1)

$$5.1.2 \quad b^2 - 4ac = 0 \tag{1}$$

$$5.1.3 \quad b^2 - 4ac < 0 \tag{1}$$

5.2 The sketch below shows the graphs of $y = k^x + t$ and $y = ax^2 + bx + c$. The *x*-intercepts of *h* are (0; 0) and (0; 4). Q(1; -3) is a point on *h*. The horizontal line through P, the turning point of *h*, is the asymptote of *g*. The *x*-intercept of *g* lies on the axis of symmetry of *h*.

5.2.6	For which value(s) of r will the roots of $x^2 - 4x + r$ be non-real?	(2) [14]
5.2.5	Hence, calculate the value of k .	(2)
5.2.4	Write down the value of t .	(1)
5.2.3	Write down the range of h .	(1)
5.2.2	Determine the coordinates of P, the turning point of h .	(2)
5.2.1	Show that $a = 1$ and $b = -4$.	(3)

Mathemation Mathemation Mathemation Mathematic Mathemat

QUESTION 6

Given the functions $p(x) = -2x^2 - 5x + 3$ and q(x) = mx + 3. The angle of inclination of q is 135°.

6.1	Determine the intercepts of p with the x and y axes.	(3)
6.2	Determine the coordinates of the turning point of p .	(2)
6.3	Write down the value of m , the gradient of q .	(1)
6.4	Sketch the graphs of p and q on the same set of axes. Clearly indicate ALL the intercepts with the axes as well as the coordinates of the turning point.	(5)
6.5	Determine the value of k for which the straight line $y = -x + k$ will be a tangent	
	to p.	(3)
		[14]

TOTAL MARKS: 100

Downloaded from Stanmorephysics.com

п

education

Department: Education PROVINCE OF KWAZULU-NATAL

MATHEMATICS P1

COMMON TEST

JUNE 2019

MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

This marking guideline consists of 9 pages.

1.1.1	x(2x-5) = 0	
1.1.1		5
	$x = 0$ or $x = \frac{5}{2}$	$\checkmark x = 0 \checkmark x = \frac{5}{2}$
	2	(2)
1.1.2	$2x^2 - x - 7 = 0$	(2)
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-7)}}{2(2)}$	\checkmark substitution into quadratic
	$x = \frac{2(2)}{2(2)}$	formula
	x = 2,14 or $x = -1,64$	✓ answer ✓ answer
	x = 2, 14 or $x = -1, 04$	(3)
1.1.3	$x - \sqrt{2x - 1} = 2$	(3)
1.1.5		
	$x - 2 = \sqrt{2x - 1}$	✓ isolate surd
	$x^2 - 4x + 4 = 2x - 1$	\checkmark square both sides
	$x^2 - 6x + 5 = 0$	\checkmark standard form
	(x-5)(x-1) = 0	
	$x = 5 \text{ or } x \neq 1$	✓ answer ✓ $x \neq -1$
		(5)
1.1.4	$3x^2 + 7x - 6 \ge 0$	
	$(3x-2)(x+3) \ge 0$	✓ factors
	$\begin{array}{c c} \bullet & \bullet & \bullet & \bullet \\ \bullet & -3 & \bullet & \bullet \\ & & & 3 \end{array}$	
	3	
	$x \le -3$ or $x \ge \frac{2}{3}$	✓✓ answers
	3	(3)
		(3)
1.1.5	$3^{x}\left(x+\frac{1}{2}\right)<0$	
		$\checkmark 3^x > 0$
	$3^x > 0$ for all real values of x	▼ 3 ⁿ > 0
	$\therefore x + \frac{1}{3} < 0$	
		$\checkmark x + \frac{1}{3} < 0$
	$\therefore x < -\frac{1}{3}$	✓ answer
1.0	5	(3)
1.2	$x - 4y = 5$ and $x^2 - 2xy - 3y^2 = 0$	
	x = 5 + 4y	\checkmark making x the subject of the
	$(\Gamma + 4\alpha)^2 - 2\alpha(\Gamma + 4\alpha) - 2\alpha^2 = 0$	formula ✓ substitution
	$(5+4y)^2 - 2y(5+4y) - 3y^2 = 0$	
	$25 + 40y + 16y^2 - 10y - 8y^2 - 3y^2 = 0$	\checkmark simplification
	$5y^2 + 30y + 25 = 0$	\checkmark standard form
	$y^2 + 6y + 5 = 0$	
	(y+5)(y+1) = 0	$\checkmark y$ values
	y = -5 or y = -1 x = -15 or x = 1	$\checkmark x$ values
	$x = -15 \ 01 \ x = 1$	(6)
L	1	

Copyright Reserved

Please turn over

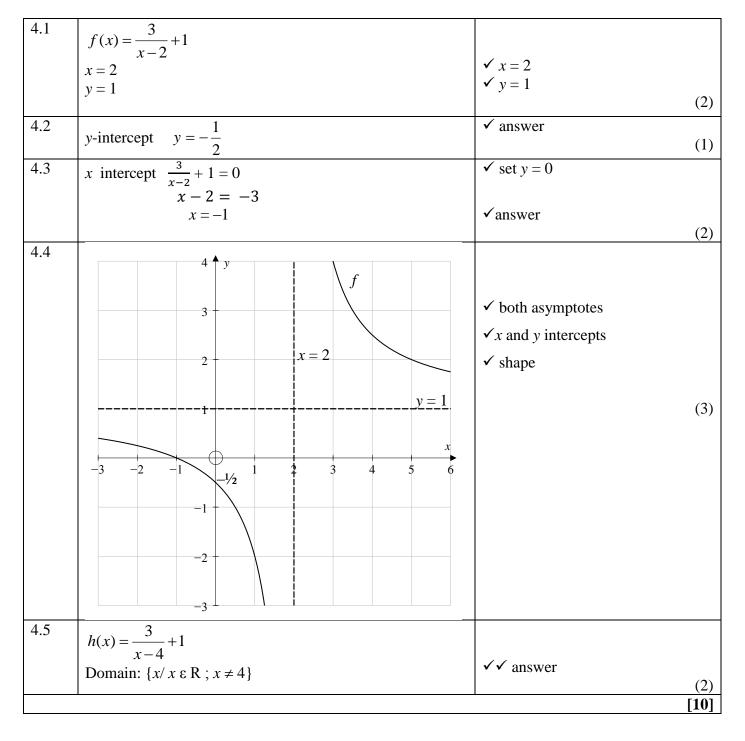
Common TestJune 2019

Mathematics Mathematica Mathematics Mathematica Mathem

OR	
$4y = x - 5$ $y = \frac{x - 5}{4}$	\checkmark making y the subject of the formula
$x^{2} - 2x\left(\frac{x-5}{4}\right) - 3\left(\frac{x-5}{4}\right)^{2} = 0$	✓ substitution
$16x^2 - 8x^2 + 40x - 3x^2 + 30x - 75 = 0$	\checkmark simplification
$5x^2 + 70x - 75 = 0$	\checkmark standard form
$x^2 + 14x - 15 = 0$	
(x+15)(x-1) = 0	$\checkmark x$ values
$x = -15 \qquad or x = 1$	\checkmark y values
y = -5 or $y = -1$	(6)
	[22]

QUESTION 2

2.1.1	$\left(\frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2}\right)^2$	
	$=\frac{4}{3}-2+\frac{3}{4}$	\checkmark for correct expansion
	$=\frac{1}{12}$	✓answer (2)
2.1.2	$\frac{\sqrt{72}}{\sqrt{8} + \sqrt{98}}$	
	$=\frac{\sqrt{36\times2}}{\sqrt{4\times2}+\sqrt{49\times2}}$	\checkmark simplifying surds
	$=\frac{6\sqrt{2}}{2\sqrt{2}+7\sqrt{2}}$	
	$=\frac{6\sqrt{2}}{9\sqrt{2}}$	\checkmark adding like surds
	$=\frac{2}{3}$	✓ answer (3)


Please turn over

212	$((2^{n+1}) 2^{n+1})$	1
2.1.3	$\frac{6(3^{n+1})}{3^{n(n-1)}} \div \frac{2.9^{n+1}}{3^{n^2-1}}$	
	$3^{n(n-1)}$ 3^{n^2-1}	
	$= \frac{6.3^n \cdot 3^1}{3^{n^2} \cdot 3^{-n}} \times \frac{3^{n^2} \cdot 3^{-1}}{2 \cdot 3^{2n} \cdot 3^2}$	✓ writing as prime bases
	$3^{n^2} \cdot 3^{-n}$ 2. $3^{2n} \cdot 3^{2}$	✓ simplification using exp. laws ✓ ÷ to × and invert 2^{nd} fraction
	$=\frac{1}{3}$	\checkmark = 10 × and invert 2 fraction \checkmark answer
	3	(4)
	OR	
	$6(3^{n+1})$ 2 9^{n+1}	
	$\frac{6(3^{n+1})}{3^{n(n-1)}} \div \frac{2.9^{n+1}}{3^{n^2-1}}$	
	$= 6.3^{n+1-n^2+n} \div 2.3^{2n+2-n^2+1}$	\checkmark writing as prime bases
		\checkmark simplification using laws
	$=\frac{6.3^{-n^2+2n+1}}{2.3^{-n^2+2n+3}}$	
	$=\frac{3^{-n^2+2n+2}}{3^{-n^2+2n+3}}$	
		 ✓ simplification using laws
	$=\frac{1}{3}$	✓ answer
	5	(4)
2.2	$3^{x}.5+3^{x+1}=216$	
	$3^{x}.5 + 3^{x}.3^{1} = 216$	
	$8.3^{x} = 216$	\checkmark simplification to 8.3 ^{<i>x</i>}
	$3^{x} = 27$	(a) a7
		$\checkmark 3^x = 27$
	$3^{x} = 3^{3}$	✓ answer
	<i>x</i> = 3	(3)
2.3	$\frac{\frac{18^{x}}{2^{-x}}}{-(3.6)^{x}}$	
	2^{-x}	
	$(3.6)^x$	
	$-\frac{1}{2^{-x}}$	
	$= 3^x \cdot 6^x \cdot 2^x$	\checkmark simplification suing exp. laws
	$= (36)^{x} \text{ or } (6^{x})^{2}$ = 5 ²	\checkmark for writing as (36) ^{<i>x</i>} or (6 ^{<i>x</i>}) ²
	$= 5^{2}$ = 25	4
	= 25	\checkmark answer (3)
	OR	(3)
	18 ^x	
	$\frac{10}{2^{-x}}$	
	$2^{2} 2^{x} \cdot 3^{2x}$	
	$= \frac{2^{-x}}{2^{-x}}$	\checkmark simplification suing exp. laws
	$\begin{vmatrix} -2 & .5 \\ - & (6^x)^2 \end{vmatrix}$	
	$ = 2^{2x} \cdot 3^{2x} = (6^x)^2 = 5^2 $	• for writing as $(36)^x$ or $(6^x)^2$
	= 25	✓ answer
		(3)
		[15]

3.1	26;37	$\checkmark \checkmark$ answers (2)
3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\checkmark 1^{\text{st}}$ difference
	8 <i>x</i> +4 -4 <i>x</i> -8	✓ 2^{nd} difference
	5x + 9 + 3x - 5 = x + 1 - 5x - 9 8x + 4 = -4x - 8 x = -1	 ✓ equating 2nd differences ✓ answer (4)
3.3.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2a = 2 3a + b = 4 a + b + c = 3a = 1 b = 1 c = 1	$\checkmark a = 1$ $\checkmark b$ value
	$T_n = n^2 + n + 1$	✓ c value ✓ answer (4)
3.3.2	$n^2 + n + 1 > 463$ $n^2 + n - 462 > 0$	$\checkmark T_n > 463$
	$ \begin{array}{l} n + n - 462 > 0 \\ (n - 21)(n + 22) > 0 \end{array} $	✓ standard form✓ factors or quadratic formula
	$\begin{array}{c} \leftarrow + \circ - \circ + \\ -22 & 21 \end{array}$	
	\therefore The 22 nd term will be the first to exceed 463	✓answer (4)
3.3.3	n^{th} term of 1 st difference: T _n = 2n + 2 2n + 2 = 102 n = 50 ∴ between T ₅₀ and T ₅₁	✓ $T_n = 2n + 2$ ✓ equating T_n to 102 ✓ value of n ✓ answer (4)
3.3.4	The nos. at the end of the rows are: 3;7;13;21;	(4)
	$:: T_n = n^2 + n + 1$:: $T_{60} = (60)^2 + 60 + 1$	✓ T_n from 3.3.1 ✓ substitution of 60 for <i>n</i> into T_n ✓ answer
	= 3661	(3)

3.4	6; <i>p</i> ; <i>q</i> ; <i>r</i> ; 42;	
	6 + 4(common difference) = 42	✓ $6 + 4$ (common difference) = 42
	4(common difference) = 36	
	common difference $= 9$	\checkmark common difference
	$\therefore p = 15$	\checkmark value of p
	$\therefore q = 24$	
	\therefore $r = 33$	\checkmark values of q and r
		(4)
	OR	
	6; p; q; r; 42;	
	$T_n = bn + c$	
	$6 = b + c \dots T_1 = 6$	
	$42 = 5b + c \dots T_5 = 42$	\checkmark setting up equations
	4b = 36	(
	b = 9	✓ common difference
	$\therefore p = 15$	\checkmark value of <i>p</i>
	$\therefore q = 24$	
	\therefore $r = 33$	\checkmark values of q and r
		(4)
		[25]

Mathen and Mathen Stanmorephysics.com NSC- GRADE 11 Marking Guideline

5.1.1	С	✓ answer
• • • • •		(1)
5.1.2	A	✓ answer
		(1)
5.1.3	В	✓ answer
		(1)
5.2.1	y = a(x)(x - 4)	\checkmark substituting <i>x</i> -intercepts
	-3 = a (1)(1-4)	✓ substituting $(1; -3)$
	1 = a	
	y = x(x-4)	
	$= x^2 - 4x$	\checkmark writing eqn. in standard form
	b = -4	(3)
5.2.2	x = 2	$\checkmark x = 2$
	$y = 2^2 - 4(2)$	
	= -4	$\checkmark y = -4$
5.2.2	$\frac{P(2; -4)}{2}$	(2)
5.2.3	$y \in [-4; \infty)$	✓ answer (1)
	OR	(1)
	OR	
	$y \ge -4$	✓ answer
	<i>y</i> <u><i>z</i></u> <u><u></u></u>	(1)
5.2.4	t = -4	✓ answer
• • • • •		(1)
5.2.5	$y = k^x + t$	
	$0 = k^2 - 4$	\checkmark substituting –4 , 0 and 2
	$4 = k^2$	
	$\therefore k = 2$	✓ answer
		(2)
5.2.6	r > 4	✓✓ answer
		(2)
	OR	
	$r \in (4;\infty)$	$\checkmark \checkmark$ answer (2)
		[14]

6.1	<i>x</i> -intercepts: $-2x^2 - 5x + 3 = 0$	
0.1	$2x^{2} + 5x - 3 = 0$	
	(2x-1)(x+3) = 0	✓ factors
	$x = \frac{1}{2}$ or $x = -3$	\checkmark x-intercepts
	y-intercept: $(0; 3)^2$	✓ y-intercept
		(3)
6.2	Axis of symmetry:	
	$x = \frac{x_1 + x_2}{2}$ or $x = \frac{-b}{2a}$	
	2 2u	
	$x = \frac{-3 + \frac{1}{2}}{2} \text{or} x = \frac{-(-5)}{2(-2)}$	
	$x = -\frac{5}{4}$	\checkmark <i>x</i> -coordinate
	Maximum value:	
	$y = -2(\frac{-5}{4})^2 - 5(\frac{-5}{4}) + 3$	
	- (-)	
	$y = \frac{49}{8}$	✓ <i>y</i> –coordinate
	\therefore Turning point: $\left(-1\frac{1}{4}; 6\frac{1}{8}\right)$	(2)
6.3	$m = tan \ 135^{\circ}$	
	m = -1	✓ answer (1)
6.4		(1)
0.4	$\left(-1\frac{1}{4}; 6\frac{1}{8}\right)_{6}^{7}\right]^{y}$	
		\checkmark y intercept of p
		$\checkmark x$ intercepts of p
		\checkmark turning point of <i>p</i>
		✓ <i>y</i> intercept of q
		\checkmark x intercept of q
	-4 -3 -2 -1 $1/2$ 1 2 3 4	
		(5)
6.5	$-2x^2 - 5x + 3 = -x + k$	✓ equating
	$-2x^2 - 4x + 3 - k = 0$	
	$(-4)^2 - 4(-2)(3-k) = 0$	\checkmark substituting into $b^2 - 4ac = 0$
	16 + 24 - 8k = 0	1 anguyar
	k = 5	\checkmark answer (3)
	1	[14]
I		TOTAL: 100

TOTAL: 100