Downloaded from Stanmorephysics.com

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P2

COMMON TEST

JUNE 2019

MARKS: 100

TIME: 2 hours

This question paper consists of 8 pages and 2 DIAGRAM SHEETS.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. TWO DIAGRAM SHEETS for QUESTION 2.2, QUESTION 5.1, QUESTION 5.2, QUESTION 6.1 AND QUESTION 6.2 are attached at the end of this question paper. Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

- 1.1 Consider the point K(-8; 3) in the Cartesian plane.
 - 1.1.1 Write down the equation of the horizontal line passing through K. (1)
 - 1.1.2 Write down the equation of the vertical line passing through K. (1)
- 1.2 In the diagram, A(p; 1), B and C(6; -3) are the vertices of \triangle ABC. D(5; 2) is the midpoint of BC. A lies in the second quadrant. DC forms an angle θ with the *x*-axis.

Determine the:

1.2.1	Gradient of BC.	(2)
1.2.2	Size of θ , rounded off to ONE decimal place.	(3)
1.2.3	Coordinates of B.	(3)
1.2.4	Value of p, if it is given that the length of AC = $4\sqrt{5}$.	(5)

[15]

NSC

QUESTION 2

- 2.1 Calculate the value of q if K(-6; 9), L(-3; q) and M(-2; -1) are collinear. (4)
- 2.2 G(-3; -5), D(6; 1), H and C are the vertices of quadrilateral GDHC. CG \perp GD. The equation of CH is y = 3x + 13.

2.2.1Determine the equation of CG.(4)2.2.2Calculate the coordinates of C.(3)

2.2.3 Calculate the size of $\hat{\text{GCH}}$. (5)

[16]

3	3.1	In the diagram below $P(-16; y)$ is a point such that $OP = 20$ units and reflex	$\hat{ROP} = \theta$

[17]

3.2

6 NSC

QUESTION 4

4.1 Use trigonometric identities to prove that
$$\frac{\sin^3 x + \sin x \cdot \cos^2 x}{\cos x} = \tan x$$
 (3)
4.2 Solve for x if $\sin x = 0,412$ and $x \in [0^\circ; 360^\circ]$. (2)
4.3 Consider the equation: $\tan 3x + 2,64 = 0$.
4.3.1 Determine the general solution of $\tan 3x + 2,64 = 0$ (4)
4.3.2 Hence, or otherwise, solve for x if $-90^\circ \le x \le 90^\circ$ (3)
4.4 Solve for x if $4\sin^2 x + 7\cos x - 4 = 0$ and $x \in [0^\circ; 360^\circ]$. (6)

[18]

GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 5 and 6.

QUESTION 5

MHN is a tangent to circle GHK at H. L is a point on GK and J a point on HK such that LJ is 5.1 parallel to GH. $\hat{H}_1 = 43^\circ$ and $\hat{L}_1 = 130^\circ$.

Calculate, with reasons, the size of:

5.1.1	Ŕ	(2)
5.1.2	\hat{H}_3	(4)

Copyright Reserved

(4)

5.2 A, B, C, D and E are points on the circle having centre O. DC is produced to G. Diameter AOD bisects chord CE in F, and intersects chord BE in S. $\hat{A} = 32^{\circ}$ and $\hat{GCB} = 70^{\circ}$.

Calculate, with reasons, the sizes of the following angles:

5.2.1	BÊD	(2)
5.2.2	\hat{C}_2	(4)
5.2.3	\hat{D}_1	(3)
5.2.4	Ê ₃	(3)

Copyright Reserved

[18]

NSC

QUESTION 6

6.1 In the diagram, O is the centre of the circle. VP and WP are chords, and VO and WO have been drawn.

Use the diagram on the DIAGRAM SHEET to prove the theorem which states that an angle that an arc subtends at the centre of a circle is twice the size of the angle subtended by the same arc at the circle i.e. $\hat{VOW} = 2\hat{P}$.

6.2 In the diagram, O is the centre of the circle. A, B, C and F are points on the circumference. AC and BF intersect in E and EF = FC.

Prove that:

6.2.1	AB FC.	(5)

6.2.2 OBCE is a cyclic quadrilateral. (5)

[16]

(6)

TOTAL: 100

NAME & SURNAME:

DIAGRAM SHEET 1

QUESTION 2.2

QUESTION 5.1

QUESTION 5.2

Mathematics P2

10

Copyright Reserved

Downloaded from Stanmorephysics.com

П

I.

П

education

Department: Education PROVINCE OF KWAZULU-NATAL

MATHEMATICS P2

COMMON TEST

JUNE 2019

MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS: 100

This marking guideline consists of 10 pages.

Copyright Reserved

GEOMETRY • <i>MEETKUNDE</i>			
S	A mark for a correct statement (A statement mark is independent of a reason)		
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)		
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)		
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
S/R	Award a mark if statement AND reason are both correct		
	Ken 'n punt toe as die bewering EN rede beide korrek is		

2

Mathematical from Stanmorephysics.com GRADE 11 Marking Guideline

QUESTION 1

1.1.1	y = 3	✓ answer
		(1)
1.1.2	x = -8	✓ answer
121		(1)
1.2.1	$m = \frac{y_2 - y_1}{x_1 - x_2}$	
	$x_2 - x_1$	
	$=\frac{-3-2}{5}$ OR $=\frac{2-(-3)}{5}$	\checkmark correct substitution
		1 answor
	- 5	(2)
1.2.2	$\tan \theta = m$	(-/
	$\tan \theta = -5$	$\checkmark \tan \theta = -5$
	reference angle: 78.7°	\checkmark reference angle: 78,7°
	$\theta = 180^{\circ} - 787^{\circ}$	
	-101.3°	✓ 101,3°
	-101,5	(3)
1.2.3	$\frac{x+6}{x+6} = 5$ and $\frac{y+(-3)}{x+2} = 2$	
	$\frac{1}{2}$ = 5 and $\frac{1}{2}$ = 2	✓ method
	$x = 4 \qquad \qquad y = 7$	$\checkmark x = 4 \checkmark y = 7$
	B(4;7)	(3)
1.2.4	$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$4\sqrt{5} = \sqrt{(6-p)^2 + (-3-1)^2}$	✓ substitution into distance formula
	$4\sqrt{5} = \sqrt{36 - 12p + p^2 + 16}$	\checkmark equating to $4\sqrt{5}$
	$4\sqrt{5} = \sqrt{p^2 - 12p + 52}$	
	$80 = p^2 - 12p + 52$	\checkmark squaring both sides
	$p^2 - 12p - 28 = 0$	
	(p-14)(p+2)=0	✓ factors
	p = -2 or $p = 14$	
	p = -2	√answer
	OR	(5)
	AC = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$(p-6)^{2} + (1-(-3))^{2} = (4\sqrt{5})^{2}$	✓ substitution into distance formula
	$(p-6)^2+16=80$	\checkmark equating to $4\sqrt{5}$
	$(n-6)^2 - 64$	\checkmark squaring both sides
	(p-0) = -04	✓ square rooting both sides
	$p - 0 = \pm \delta$ $n = -2 \text{ or } n = 14$	· square rooming both sides
	p = -2 or p = 14	√answer
	p = -2	(5)
		[15]

Copyright Reserved

2.1	$m_{KM} = \frac{-1 - 9}{-2 - (-6)}$	\checkmark substitution to determine	e
	$=-\frac{5}{2}$	m _{KM}	
	$m_{KL} = \frac{q-9}{-3-(-6)}$		
	$=\frac{q-9}{2}$	\checkmark expression for m_{KL}	
	3 Because the points are collinear: $m = m$		
	because the points are commean: $m_{KM} = m_{KL}$ 5 $a - 9$	<i>/</i>	
	$-\frac{3}{2} = \frac{4}{3}$	✓ equating gradients	
	2(q-9) = -15		
	$q = \frac{3}{2}$	√answer (4	4)
	OR	OR	
	$m = \frac{-1-9}{2}$	\checkmark substitution to determine	e
	-2-(-6)	$m_{_{KM}}$	
	$=-\frac{5}{2}$		
	$m_{LM} = \frac{-1-q}{-2-(-3)}$	\checkmark expression for m_{LM}	
	= -1 - q		
	Because the points are collinear: $m_{KM} = m_{LM}$ $-\frac{5}{2} = -1 - q$	√equating gradients	
	$q = \frac{3}{2}$	√answer (4	1)
	- 2 OR	OR	
	$m_{KL} = \frac{q-9}{-3-(-6)}$	\checkmark expression for m_{KL}	
	$=\frac{q-9}{3}$		
	$m_{LM} = \frac{-1 - q}{-2 - (-3)}$	\checkmark expression for m_{LM}	
	= -1 - q		
	Because the points are collinear: $m_{KL} = m_{LM}$ $\frac{q-9}{r} = -1-q$	✓ equating gradients	
	3 q - 9 = -3 - 3q		
	$q = \frac{3}{2}$	√answer (4	4)

Copyright Reserved

GRADE 11 Marking Guideline

2.2.1	$m_{DG} = \frac{y_2 - y_1}{x_1 - x_2}$	
	$-\frac{-5-1}{-5-1}$	
	-3-6	
	$=\frac{2}{3}$	✓ gradient of DG
	$m_{CG} = -\frac{3}{2}$	✓ gradient of CG
	Equation of CG: $y = -\frac{3}{2}x + c$ OR $y - y_1 = -\frac{3}{2}(x - x_1)$	
	$-5 = -\frac{3}{2}(-3) + c \mathbf{OR} \qquad y - (-5) = -\frac{3}{2}(x - (-3))$	✓ substitution of $(-3;-5)$
	$c = -\frac{19}{2}$ OR $y+5 = -\frac{3}{2}x-\frac{9}{2}$	
	$y = -\frac{3}{2}x - \frac{19}{2}$	✓ equation of CG (4)
2.2.2	At C: $-\frac{3}{2}x - \frac{19}{2} = 3x + 13$	✓ equating equations of CG and CH
	$\frac{9}{2}x = -\frac{45}{2}$	
	z = z	\checkmark <i>x</i> -value
	x = -3	✓ v-value
	y = 3(-5) + 13 = -2	(3)
	C(-5;-2)	(-)

3.1.1	$y^2 = r^2 - x^2$ [Theorem of Pythagoras]	
	$=20^{2}-(-16)^{2}$	\checkmark substitution
	=144	
	y = -12	\checkmark answer (2)
3.1.2(a)	$\sin(180^\circ - \theta) = \sin\theta$	$\sqrt{\sin\theta}$
	$=\frac{-12}{}$	
	20	
	$=-\frac{3}{5}$	✓ answer
3.1.2(b)	$\frac{5}{(100^\circ + 0)} = 0$	(2)
5.1.2(0)	$\cos(180 + \theta) = -\cos\theta$	$\sqrt{-\cos\theta}$
	$=-\left(\frac{-16}{20}\right)$	
	4	√ answer
	$=\frac{1}{5}$	(2)
3.1.3	$\sin\theta = \frac{-3}{5} = \frac{y}{15}$	$\sqrt{-3} = \frac{y}{2}$
	5 15 y = -9	5 15
	y = y -4 x	v y-coordinate
	$\cos\theta = \frac{1}{5} = \frac{\pi}{15}$	$\sqrt{\frac{-4}{5}} = \frac{x}{15}$
	x = -12	\checkmark x-coordinate
	S(-12;-9)	(4)
3.2	$\cos(-33^\circ)$. $\tan 147^\circ$	
	2 cos 303°.sin 240°	
	$\cos 33^\circ$. – tan 33°	(and 220 (top 220
	$=\frac{1}{2\cos 57^{\circ}\sin 60^{\circ}}$	$\checkmark \cos 53^\circ \checkmark -\sin 60^\circ$
	$\cos 33^\circ$. $-\frac{\sin 33^\circ}{220}$	$\sqrt{\tan 33^\circ} = \frac{\sin 33^\circ}{33^\circ}$
	$=\frac{\cos 33^\circ}{\sqrt{3}}$	$\cos 33^{\circ}$
	$2\sin 33^\circ$. $-\frac{\sqrt{3}}{2}$	$\vee \cos 3 / = \sin 33^\circ$
	$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{3}}{2}$	✓ answer
	ς εγ	(7)
		[17]

		(6)
	$x = 90^{\circ} \text{ or } 2/0^{\circ}$	$\checkmark 90^{\circ} \checkmark 270^{\circ}$
	no solution	✓ no solution
	$\cos x = 0$ or $\cos x = \frac{1}{4}$	
	7	
	$\cos x (4\cos x - 7) = 0$	✓ factors
	$4\cos^2 x - 7\cos x = 0$	✓ standard form
	$-4\cos^2 r + 7\cos r = 0$	
	$4(1-\cos^2 x)+7\cos x-4=0$	$\sqrt{\sin^2 x} = 1 - \cos^2 x$
4.4	$4\sin^2 x + 7\cos x - 4 = 0$	
		(3)
4.3.2	so. $x \in \{-85, 08^{-5}; -25, 08^{-5}; 36, 92^{-5}\}$	NOTE: 1 mark for each correct answer
420	$S_{2}^{0} = (-92.099 + -22.099 + 27.029)$	(4)
	$x = 36,92^{\circ} + k.120^{\circ} \text{ or } x = 96,92^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$	\checkmark General solution (4)
	$3x = 110,75^\circ + k.360^\circ$ or $3x = 290,75^\circ + k.360^\circ$	$\sqrt{3x} = 180^\circ - 69,25^\circ \text{ or } 3x = 360^\circ - 69,25^\circ$
	Reference angle: 69,25°	✓ 69,25°
	$\tan 3x = -2,64$	$\checkmark \tan 3x = -2,64$
	$\tan 3x + 2,64 = 0$	
	OR	
		(4)
	$x = 36,92^{\circ} + k.60^{\circ}; k \in \mathbb{Z}$	\checkmark General solution
	$3x = 110,75^\circ + k.180^\circ$	$\sqrt{3x} = 180^\circ - 69,25^\circ$
	Reference angle: 69,25°	$\checkmark 69.25^{\circ}$
т.Ј.1	$\tan 3x = -2,64$	$\sqrt{\tan 3x} = -2.64$
431	$\tan 3x + 2.64 = 0$	(2)
	$x = 24,33^{\circ}$ or $x = 155,67^{\circ}$	$\checkmark \checkmark$ answers (2)
4.2	$\sin x = 0,412$	
		(3)
	$=\tan x$	$\checkmark \frac{1}{\cos x} = \tan x$
	$=\frac{\sin x(1)}{\cos x}$	$\sin x + \cos x = 1$
	sin x(1)	$\sqrt{\sin^2 r + \cos^2 r} = 1$
	$=\frac{\sin x (\sin x + \cos x)}{\cos x}$	
	$\sin x (\sin^2 x + \cos^2 x)$	√ factors
	$\frac{\sin x + \sin x \cos x}{\cos x}$	
4.1	$\sin^3 r + \sin r \cos^2 r$	

5.1.1	$\hat{\mathbf{K}} = \hat{\mathbf{H}}_1 = 43^\circ$	[tan-chord-theorem]	✓ S ✓ R	
				(2)
5.1.2	$\hat{G} = 180^{\circ} - \hat{L}_{1} = 50^{\circ}$	[co-interior \angle 's; GH LG]	✓ S ✓ R	
	$\hat{H}_{3} = \hat{G} = 50^{\circ}$	[tan-chord-theorem]	✓ S ✓ R	
	5			(4)
5.2.1	$\hat{BED} = \hat{C}_1 = 70^\circ$	[ext. \angle of a cyclic quad.]	✓ S ✓ R	
				(2)
5.2.2	$\hat{\mathbf{C}}_3 = \hat{\mathbf{A}} = 32^\circ$	$[\angle$'s in same segment]	✓ S ✓ R	
	$\hat{\mathbf{C}}_2 = 180^\circ - (\hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_3)$	$[\angle$'s on a straight line]	✓ R	
	$=180^{\circ} - (70^{\circ} + 32^{\circ})$			
	=78°		✓ S	
				(4)
5.2.3	$\hat{F}_2 = 90^{\circ}$ [lin	e from centre to midpoint of chord]	\checkmark S \checkmark R	
	$\hat{D}_1 = 180^\circ - (\hat{F}_2 + \hat{C}_3)$	[sum of \angle 's of Δ]		
	$=180^{\circ} - (90^{\circ} + 32^{\circ})$			
	=58°		✓ S	
5.2.1	^			(3)
5.2.4	$AED = 90^{\circ}$ [\angle	in a semi-circle]	\checkmark S \checkmark R	
	$\ddot{E}_3 = 90^\circ - B\dot{E}D$			
	$=90^{\circ}-70^{\circ}$		√ S	
	= 20°			(3)
				[18]

GRADE 11 Marking Guideline

6.1	Construction: Join PO and produce to B.	✓ construction
	$ \begin{array}{c} x \\ 10 \\ x \\ y \\ 2 \\ y \\ 2 \\ y \\ y$	
	W	
	Proof:	
	Let $V = x$ $\hat{P} = \hat{V}$ is two points (in our sides)	
	$P_1 = V = x$ [VO = PO = radii; \angle 's opp. = sides] $\hat{O}_1 = \hat{V}_1 + \hat{P}_2$ [even \angle of A]	√ S/R
	$O_1 = \mathbf{v} + P_1 [\text{ext. } \angle \text{ or } \Delta]$ $= 2x$	✓ S/R
	Let $\hat{\mathbf{W}} = y$	
	$\hat{\mathbf{P}}_2 = \hat{\mathbf{W}} = y$ [WO = PO = radii; \angle 's opp. = sides]	✓ S
	$\hat{\mathbf{O}}_2 = \hat{\mathbf{W}} + \hat{\mathbf{P}}_2 [\text{ext.} \ \angle \text{ of } \Delta]$	✓ S
	=2y	\checkmark S
	$O_1 + O_2 = 2x + 2y$. 5
	vOw = 2(x+y)	
	=2P	(6)
6.2.1	Let $A = x$ $\hat{E} = \hat{A} = y$ [(is in some compart)]	
	$\hat{\Gamma} = A = x$ [$\angle s$ in same segment] $\hat{\Gamma}_{c} = \hat{F} = x$ [$\angle s$ opp = sides]	✓ S ✓ R
	$\hat{A} = \hat{C}$, [both = x]	V S V K
	$AB \parallel FC \qquad [alt. \angle's are =]$	\checkmark R (5)
6.2.2	$\hat{O} = 2\hat{A}$ [\angle at centre = 2 × \angle at circum.]	\checkmark S \checkmark R
	=2x	(0
	$E_2 = F + C_2 \qquad [ext. \ \angle \text{ of } \Delta]$	✓ S
	$\hat{\mathbf{O}} = \hat{\mathbf{E}}$ [both = 2 r]	√ S
	OBCE is a cyclic quad. [converse: \angle 's in same segment]	$\sim R$
		(5)
		[16]

Mathernation Mathernation	from	Stanmorephysics.com
June 2019		

GRADE 11 Marking Guideline

TOTAL: 100