

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION 2015

10612

MATHEMATICS

SECOND PAPER

MARKS: 150

TIME: 3 hours

14 pages, 5 diagram sheets and 1 information sheet.

MATHEMATICS: Paper 2

Managarania Managa

X10

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

MATHEMATICS (Second Paper)

TIME: 3 hours

MARKS: 150

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Five diagram sheets for QUESTION 1.1, 2.1, 2.2, 2.3, 9.1, 9.2, 10.1, 10.2, 11 and the INFORMATION SHEET are attached at the end of this question paper.
- 9. Write your name in the space provided on the Diagram Sheets and hand them in together with your ANSWER BOOK.
- 10. Number the answers correctly according to the numbering system used in this question paper.

11. Write neatly and legibly.

A hospital carries out a survey to compare the reaction time of patients of different ages, to a specific medication taken.

The results are shown in the table and scatter plot below.

Draw the line of best fit on the scatter plot on DIAGRAM SHEET 1.

(2)

- 1.2 ONE of the patient's reaction time is an outlier.
 - 1.2.1 How old is this patient?

(1)

1.2.2 Explain why this patient is an outlier.

- (1)
- 1.3 Calculate the equation of the least squares regression line (line of best fit) for the data.
- (3)
- 1.4 Calculate the correlation coefficient of the data. Comment on the strength of the relationship between the variables.
- (2)
- 1.5 Hospital records for this reaction time test give the following information.

	15 year olds	30 year olds
	Time	Time
	(hundredths of a second)	(hundredths of a second)
Lower quartile	20	61
Median	22 .	65
Upper quartile	25	76

Comment on the reaction time of the different age groups on this test. Motivate your answer by referring to the values given.

(2) [11]

MATHEMATICS		4
(Second Paper) 1061	2/15	, u g
(Оссоли кирск)	an sadah di maka sangan wa	

The ages of 500 people attending a concert are given in the table below.

Age in years	Number of people	Cumulative frequency
$0 \le A < 10$	20	
$10 \le A < 20$	130	
$20 \le A < 30$	152	
$30 \le A < 40$	92	
$40 \le A < 60$	86	and the second s
$60 \le A < 80$	18	
$80 \le A < 100$	2	

Complete the cumulative frequency column on DIAGRAM SHEET 2. (1)2.1 Draw an ogive (cumulative frequency graph) of the above data on DIAGRAM 2.2 (3) SHEET 2. Use your cumulative frequency graph to estimate 2.3 (1) 2.3.1 the median age. the percentage of people at the concert who are 16 years and older. (3) 2.3.2 [8]

MATHEMATICS	BEG DEGERBOOK ANNOOTHE SEAT ON THE BEST SEAT OF AN ANNOONE AN ANNOONE AND ANNO	5
(Second Paper)	10612/15	3

In the diagram, A(-3; 9) and D(-5; 1) are points on \triangle ABD and \triangle ACD. B and C are points on the y-axis such that $\triangle BD = \triangle CD = 90^{\circ}$

3.1 Calculate the coordinates of M, the midpoint of AD. (2) 3.2 Calculate the length of the radius of the circle passing through A, B and D. (2) 3.3 Will point C lie on circle ABD? Give a reason for your answer. (2) Calculate the coordinates of B. (5) 3.4 3.5 Determine the equation of the straight line passing through D and which is parallel to (3) Calculate the size of BDA. Round off the answer to the nearest degree. 3.6 (6) [20]

- 4.1 Given: $x^2 + y^2 2x + 6y = 0$.
 - 4.1.1 Determine the coordinates of the centre of the circle and the length of the of the circle.
 - 4.1.2 Determine the equation of the tangent to the circle at (-2; -4). (4)
- 4.2 Points A(2; 3) and B(-1; 6) lie on the circumference of the given circle. R(p;q) is the centre of the circle and lies on the line 2x + 5y + 1 = 0.

4.2.1 Show that
$$p - q = -4$$
. (4)

ı	ATHEMATICS econd Paper)	10612/15	7
laustemen			

This question is to be done without the use of a calculator.

In the diagram below the equation of OP is given by 3y - 2x = 0. S is a point on the x-axis such that PS \perp x-axis. SÔP = a. The line segment OQ is drawn such that SÔQ = β . T is a point on the x-axis such that QT \perp x-axis.

5.1 Show that
$$\tan \alpha = \frac{2}{3}$$
. (2)

- 5.2 Calculate the value of $\sin \alpha$. (2)
- 5.3 Write down QÔP in terms of α and β . (1)
- 5.4 If it is given that $\sin \beta = \frac{3}{5}$, find the value of $\sin Q\hat{O}P$. (4)

6.1 Simplify fully WITHOUT the use of a calculator:

$$\frac{\cos(40^{\circ} - x) \cdot \cos x - \sin(40^{\circ} - x) \cdot \sin x}{\sin 205^{\circ} \cdot \cos 25^{\circ}}$$
(5)

6.2 Given:
$$\frac{\cos 2x}{\cos x + \sin x}$$

6.2.1 Show that:
$$\frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x. \tag{2}$$

Show that
$$\cos x \left(\frac{\cos 2x}{\cos x + \sin x} \right) = \frac{1}{2}$$
 can be simplified to $\cos 2x = \sin 2x$. (4)

6.2.3 Hence, determine the general solution of
$$\cos x \left(\frac{\cos 2x}{\cos x + \sin x} \right) = \frac{1}{2}$$
. (3)

6.3 In \triangle ABC, AC = m, BC = n and $\hat{C} = 4x$.

6.3.1 Write down an expression for the area of
$$\triangle$$
ABC.

(1).

(2)

(1)

[18]

MATHEMATICS	usarusus napurus anakon supestinoji isini arvista asuse renicetinoj filipinininte	0
(Second Paper)	10612/15	

The sketch below shows the graphs of $f(x) = \cos 2x$ and $g(x) = \sin(x - \theta)$ for $x \in [-180^\circ; 180^\circ]$. A $(60^\circ; 1)$ is a point on the graph of g. Use the graph to answer the questions that follow.

7.1 Write down the value of
$$\theta$$
. (1)

7.2 Determine the period of
$$f$$
. (1)

7.3 If
$$h(x) = f(x) - 1$$
, write down the range of h . (1)

7.4 Determine the values of x, where $x \in [0^{\circ}; 180^{\circ}]$ for which

7.4.1
$$f(x).g(x) < 0$$
 (3)

7.4.2
$$f'(x).g(x) > 0$$
 (2)

MATHEMATICS	10
(Second Paper) 106	12/15

In the diagram below, DE represents a vertical cell phone tower positioned on one corner of a field. The field is shaped as a cyclic quadrilateral EFGH and E, F, G and H are all on the same horizontal plane. From H, the angle of elevation to D, the top of the cell phone tower, is α . EH = EF = p units. $\hat{G} = \beta$.

8.1 Write down DE in terms of
$$\alpha$$
. (1)

8.2 Show that:

8.2.1
$$\hat{H}_2 = \frac{1}{2}\beta$$
 (Give reasons for your answers). (3)

$$8.2.2 p = \frac{\text{FH}}{2\cos\frac{1}{2}\beta} (3)$$

8.2.3
$$FH = p\sqrt{2(1+\cos\beta)}$$
 (3) [10]

MATHEMATICS	na Apertinen di Kimakan di meri da darah di Kimaka di da da mana da ngela ana Sebaghan kepangan anakam anaman	11
(Second Paper)	10612/15	A. A.

GIVE REASONS FOR YOUR STATEMENTS IN QUESTIONS 9, 10, AND 11.

QUESTION 9

9.1 In the diagram, O is the centre of the circle with AB \parallel CD and OH \perp AB, AB = 24 cm, CD = 10 cm and OD = 13 cm.

9.1.1 Give reasons for the statements below.

(a)
$$\hat{G}_1 = 90^{\circ}$$

(b)
$$AH = 12$$

(c)
$$OB = 13$$

(3)

9.1.2 Calculate the length of GH.

(5)

MATHEMATICS	12	
(Second Paper)	10612/15	emonomorius en

In the diagram, \hat{O} is the centre of the circle ACB. TA and TB are tangents to the circle at A and B respectively. O and T are joined. $\hat{BTM} = 110^{\circ}$.

9.2.1 Prove that AOBT is a cyclic quadrilateral.

(3)

9.2.2 Give a reason why $\hat{T}_1 = \hat{T}_2$

(2)

9.2.3 Calculate Ĉ.

(4) [17]

In the diagram, O is the centre of the circle. A, B, C and D are points on the circumference of the circle. Use Euclidean Geometry methods to prove the theorem which states that $\hat{A} + \hat{C} = 180^{\circ}$.

(5)

10.2 In the diagram, the circle passes through A, M, B, P, C and N.

Let $\hat{N}_2 = x$, $\hat{P}_2 = y$ and $\hat{M}_2 = z$.

10.2.1 Write down the sizes of \hat{A} , \hat{B} and \hat{C} in terms of x, y and z. (2)

10.2.2 Hence, calculate the value of $\hat{A} + \hat{B} + \hat{C}$. (4)

[11]

		Processor and a second
MATHEMATICS		
		14
(Second Paper)	10612/15	

In \triangle RGM, $\hat{E}_1 = \hat{R}_1 = \hat{R}_2$. T lies on RG produced so that TM \parallel RE.

Give with reasons, TWO other angles which are equal to \hat{R}_1 .

(4)

11.2 Prove that
$$\frac{EM}{EG} = \frac{RM}{RG}$$
.

(4)

11.3 Prove that
$$\triangle GYE \parallel \triangle GER$$
.

(4)

Hence, prove that
$$\frac{EG}{EY} = \frac{RG}{RE}$$
.

(1)

If it is further given that $G\hat{R}M = 90^{\circ}$, RM = 6 and GM = 10. Calculate the lengths of:

(2)

11.5.2 GE

(4) [19]

TOTAL: 150

MATHEMATICS		15
(Second Paper)	10612/15	

DIAGRAM SHEET 1

QUESTION 1.1

MATHEMATICS	gentles band ut angeles son mus et de spousticas e en autre appe gant aux 20° Meiro et 400 million et 100 met 5 fant de 100 met 100 me	16
(Second Paper)	10612/15	

DIAGRAM SHEET 2

QUESTION 2.1

Age in years	Number of people	Cumulative frequency
$0 \le A < 10$	20	
$10 \le A < 20$	130	
$20 \le A < 30$	152	
$30 \le A < 40$	92	
$40 \le A < 60$	86	
$60 \le A < 80$	18	
$80 \le A < 100$	2	

QUESTION 2.2 AND 2.3

	ородинун өдүүдүү үлүү мүнүн тоомик басар макшашардан и тоос барууста ойто этомик тоосуда абатта	AND VERTICAL AND
MATHEMATICS		17
(Second Paper)	10612/15	
	atta anatori torri torri a comi a titori di indicationi di comi a transferi in comi a comi a comi a comi a comi	CARROLL SERVICE DE LA COMPANION DE LA COMPANIO

DIAGRAM SHEET 3

QUESTION 9.1

QUESTION 9.2

MATHEMATICS		18
(Second Paper)	10612/15	

DIAGRAM SHEET 4

QUESTION 10.1

QUESTION 10.2

MATHEMATICS	10
(Cocond Danow) 106	17/15
(Second Paper) 106	12/15
Landau and the second of the s	CARLO A PROCESSOR AND A PROCES

DIAGRAM SHEET 5

QUESTION 11

			196