

Basic Education

KwaZulu-Natal Department of Basic Education REPUBLIC OF SOUTH AFRICA

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2015

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

TIME: 3 hours

N.B. This question paper consists of 12 pages and an Information Sheet.

Mathematics P2

NSC-KZN

September 2015 Preparatory Examination

QUESTION ONE

Ten athletes took part in a javelin throwing competition. Their height, in cm, and their arm span, in cm, is shown in the table below.

Athlete	1	2	3	4	5	6	7	8	9	10
Height (in cm)	156	173	181	174	167	170	169	174	177	168
Arm span (in <i>cm</i>)	164	181	193	178	172	178	165	183	190	173

- 1.1 Represent the height and arm span for each athlete on the scatter plot provided in the answer book. (3)
- 1.2 Determine the equation of the least squares regression line. (4)
- 1.3 Use the equation in 1.2 to estimate the arm span of an athlete whose height is 176 cm. (2)
- 1.4 The correlation coefficient for this set of data is 0,89. Comment on the strength of the relationship between height and arm span. (1)[10]

September 2015 Preparatory Examination

Mathematics P2

5 NSC-KZN

NOC-REAL

QUESTION THREE

In the diagram below, A(-1; 0), B, C(2; -2) and D are the vertices of a trapezium having AB || DC. The length of DC is three times the length of AB (i.e. DC = 3AB). $\triangle ADC = \theta$. E(2; 2) is the midpoint of AD. The angle of inclination of DC is α .

- 3.1 Determine the coordinates of D. (2)
- 3.2 Calculate the size of α , correct to ONE decimal place. (3)
- 3.3 Determine the equation of AB in the form y = mx + c. (3)
- 3.4 Calculate the size of θ , correct to ONE decimal place. (3)
- 3.5 Calculate the coordinates of B. (5)

[16]

5.1

September 2015 Preparatory Examination

Mathematics P2

NSC-KZN

QUESTION FIVE

Simplify to a single trigonometric ratio of A:

$$\frac{\tan(180^{\circ} + A) \cdot \cos(180^{\circ} - A) \cdot \sin(360^{\circ} - A)}{\cos(90^{\circ} - A)}$$
(6)

5.2 If $\cos 26 = r$, determine the following in terms of r, in its simplest form:

$$5.2.1 \cos 52^{\circ}$$
 (3)

$$5.2.2 an 71^{\circ}$$
 (6)

5.3 Prove the identity:
$$\frac{\sin 2x}{\cos 2x + \sin^2 x} = 2\tan x$$
 (4)

QUESTION SIX

6.1 Determine the general solution of:
$$\cos 2x = \sin(x - 30^\circ)$$
. (7)

- 6.2 On the set of axes provided in the answer book, draw the sketch graphs of $f(x) = \cos 2x$ and $g(x) = \sin(x 30^\circ)$ for $x \in [-180^\circ; 90^\circ]$. Clearly indicate the coordinates of the turning points and the intercepts with the axes.
- 6.3 Write down the values of x for which g(x) > f(x) in the given interval. (3)

[16]

Mathematics P2

9 NSC-KZN September 2015 Preparatory Examination

NOTE: Give reasons for your statements in questions 8, 9 and 10.

QUESTION EIGHT

8.1 In the diagram below, O is the centre of the circle passing through A, B and C. EA is a tangent to the circle at A. Use this diagram to prove the theorem which states that $\hat{EAC} = \hat{ABC}$.

(6)

Mathematics P2

11 NSC-KZN September 2015 Preparatory Examination

QUESTION NINE

In the diagram below, PQT is a tangent to the larger circle ABQ at Q. A smaller circle intersects the larger circle at A and Q. BAP and BQR are straight lines with P and R on the smaller circle. AQ and PR are drawn.

- 9.1 Prove that PQ = PR (7)
- 9.2 Prove that \triangle PBQ ||| \triangle PQA. (4)
- 9.3 Prove that the lengths of PA, PR and PB (in this order) form a geometric sequence. (3)
 [14]