| Grade 12   |     | Physical Sciences |         |  |
|------------|-----|-------------------|---------|--|
| MEMO       |     | Aug 2016          | Paper 1 |  |
| Question 1 |     |                   |         |  |
| 1          | A√✓ |                   |         |  |
| 2          | A   |                   |         |  |
| 3          | D   |                   |         |  |
| 4          | С   |                   |         |  |
| 5          | A   |                   |         |  |
| 6          | A   |                   |         |  |
| 7          | С   |                   |         |  |
| 8          | В   |                   |         |  |
| 9          | С   |                   |         |  |
| 10         | С   |                   | [20]    |  |

When a net force ✓ acts on an object, the object will accelerate in the direction of the net force with an acceleration that is directly proportional ✓ to the net force and inversely proportional ✓ to the mass of the object.
 (3)



2.1.4 right as positive

 $\vec{F}_{net} = 0$  on box mass 2kg

 $T_{1x} = 49$  N to the left  $\checkmark$ 

Using trigonometry to work out  $T_{1y}$ :

$$\frac{T_{1x}}{T_{1y}} = \tan \alpha \checkmark$$

$$T_{1y} = \frac{T_{1x}}{\tan \alpha}$$

$$T_{1y} = \frac{49}{\tan 70^{\circ}}$$

$$T_{1y} = 17,83 \text{ N}\checkmark$$

Working with vertical forces (up as positive):

$$\vec{F}_{nety} = 0$$

$$T_{1y} + N - F_g = 0 \checkmark$$

$$17,83 + N - (2)(9,8) = 0$$

$$N = 1,77N \checkmark \quad i.e. \text{ the magnitude of the normal force is } 1,77 \text{ N} \qquad (5)$$
Page 2 of 13

- 2.2.1 If body A exerts a force on body B ✓ then body B exerts an equal force on body A in the opposite direction. ✓
- (2)

2.2.2 James is correct. ✓



Meaningful, labelled diagram ✓✓

A : force of man on CAR

B : force of road surface on CAR (friction)

CAR'S motion to the left is due to A being greater than B  $\checkmark \checkmark$ (NII: a net force acts on the CAR) (5)

2.2.3 Downward force would increase N ✓

```
F_{f max} = \mu N so larger N results in larger F_{f max} \checkmark so car more difficult to push \checkmark (3)
```

As the bucket empties, straws exert force on water ✓. According to *NIII*: the water exerts an equal and opposite force back ✓ on the straw / cup, causing it to spin 'away from' the exiting water. ✓

[28]



3.2.3  $\sin \theta = \frac{2.5}{3}$   $\checkmark$  linked ratio and subs coe from 2.2.2 diagram  $\theta = 56,44^{\circ}$ 

thus he must paddle his canoe 56,44° E of N ✓ coe from diagram (or 33,56° N of E, or 33,56° to the riverbank upstream; or bearing of 56,44°) (NE not accepted) (3)

| (1 | )  |
|----|----|
|    | (1 |

- 4.1.2 Down. (1)
- 4.1.3 Take up as positive

$$\Delta \vec{y} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a} (\Delta t)^2 \checkmark$$

$$(1,3) = \vec{v}_i (0,08) + \frac{1}{2} (-9,8) (0,08)^2 \checkmark \checkmark \text{subs}$$

$$\vec{v}_i = 16,642 \text{ m} \cdot \text{s}^{-1} \text{ up } \checkmark (-1 \text{ no direction})$$
(4)

4.1.4 Taking up as positive

$$\vec{v}_{f}^{2} = \vec{v}_{i}^{2} + 2\vec{a} \cdot \Delta \vec{y} \checkmark$$
$$0^{2} = (16,642)^{2} + 2(-9,8) \cdot \Delta \vec{y} \checkmark$$

1

$$\Delta \vec{y} = 14,13041 \dots m \checkmark$$

 $\Delta \vec{y} = 14,13 \text{ m}$  from the bottom of the window

$$\Delta \vec{y} = 14,13 + 4,5$$

 $\Delta \vec{y} = 18,63 \text{ m}$  from the ground  $\checkmark$ 

$$\Delta \vec{y} = 18,63 - 1,9$$

- $\Delta \vec{y} = 16,73 \,\mathrm{m}$  from the point of release  $\checkmark$  (5)
- 4.2.1 Displacement.
- 4.2.2 t = 9h10mins = 33000s√

S = 10.5 x 500 = 5250km = 5250 000m√

Average velocity = 
$$s/t = 5250000/33000 = 159 \text{ms}^{-1} \checkmark$$
 (3)

(1)

- 4.2.4 the speed is given by distance ✓ divided by time. Since the distance is more the ratio
  will be more. ✓ (2)
- $4.2.5 \quad s_{total} \, = \, 1500m \qquad \qquad t_{total} \, = \, 2 \, x \; 60 \, = \, 120s$

From standstill till he reaches his top speed:

```
u = 0
```

```
v = 22ms<sup>-1</sup>
```

Page **5** of **13** 

| August | : 2016 Trial exam<br>a = 0,25ms <sup>-2</sup>                                            |     |
|--------|------------------------------------------------------------------------------------------|-----|
|        | $v^2 = u^2 + 2as$                                                                        |     |
|        | $22^2 = 0 + 2(0,25)(s)$                                                                  |     |
|        | 484 = 0,5(s)                                                                             |     |
|        | S = 968m ✓                                                                               |     |
|        | v = u + at                                                                               |     |
|        | 22 = 0 + 0,25(t)                                                                         |     |
|        | t = 88s√                                                                                 |     |
|        | time left before light changes = $120 - 88 = 32s \checkmark$                             |     |
|        | distance left to cover = 1500 – 968 = <b>532m</b> ✓                                      |     |
|        | speed = 22ms <sup>-1</sup> and is now constant                                           |     |
|        | $v = s/t$ 22 = s/32 $\checkmark$                                                         |     |
|        | Distance he can cover before light green is $704m\checkmark$                             |     |
|        | Yes he manages to get through the green light.                                           | (6) |
| 4.2.6  | F <sub>net</sub> = ma                                                                    |     |
|        | F <sub>net</sub> = 95(0,12) = 11,4N✓                                                     |     |
|        | $F_{net} = F_{applied} - Friction-mg sin\theta \checkmark$                               |     |
|        | 11,4 = 241 – Friction – 95(9,8)(sin15)                                                   |     |
|        | Friction = -11.36N $\checkmark$ ie in the opposite direction to the motion. $\checkmark$ | (4) |
|        |                                                                                          |     |

[28]

 $\sum E_{\rm k,i} = 8,1 \, \rm J \checkmark$ 

5.1 The total linear momentum of an isolated  $\checkmark$  system is constant (is conserved)  $\checkmark$  (2)

5.2 
$$\sum \vec{p}_{i} = \sum \vec{p}_{f} \checkmark$$
  
 $m_{1}\vec{v}_{1,i} + m_{2}\vec{v}_{2,i} = m_{1}\vec{v}_{1,f} + m_{2}\vec{v}_{2,f}$   
 $(0,80)(4,5) + (0,65)(0) = (0,80)(0,5) + (0,65)\vec{v}_{2,f} \checkmark \imath subs$   
 $v_{2,f} = 4,92307 \dots \text{m} \cdot \text{s}^{-1}$   
 $\approx 4,92 \text{ m} \cdot \text{s}^{-1} \checkmark$  (4)  
5.3  $\sum E_{k,i} = \frac{1}{2}m_{1}v_{1,i}^{2} + \frac{1}{2}m_{2}v_{2,i}^{2} \checkmark$   
 $\sum E_{k,i} = \frac{1}{2}(0,80)(4,5)^{2} + \frac{1}{2}(0,65)(0)^{2} \checkmark$ 

~

$$\sum E_{k,f} = \frac{1}{2}m_1v_{1,f}^2 + \frac{1}{2}m_2v_{2,f}^2$$

$$\sum E_{k,f} = \frac{1}{2}(0,80)(0,5)^2 + \frac{1}{2}(0,65)(4,92307...)^2$$

$$\sum E_{k,f} = 7,97692...J$$

$$\sum E_{k,f} \approx 7,98 J \checkmark$$

$$\sum E_{k,i} > \sum E_{k,f}$$

The collision is inelastic because the system lost kinetic energy.  $\checkmark$ 

(6)

5.4 Conservation of mechanical energy:

$$mgh_{\rm i} + \frac{1}{2}mv_{\rm i}^2 = mgh_{\rm f} + \frac{1}{2}mv_{\rm f}^2 \checkmark$$

Dividing by m and solving for  $h_{\rm f}$ :

$$h_{\rm f} = h_{\rm i} + \frac{v_{\rm i}^2 - v_{\rm f}^2}{2g} \checkmark$$
$$= 0 + \frac{(4,92307...)^2 - 0^2}{(2)(9,8)} \checkmark$$
$$= 1,23656 \dots {\rm m} \approx 1,24 {\rm m} \checkmark$$

Substitute first then solve for  $h_{\rm f}$ :

$$(0,65)(9,8)(0) + \frac{1}{2}(0,65)(4,92307...)^2 = (0,65)(9,8)h_f + \frac{1}{2}(0,65)(0)^2 \checkmark$$

 $h = 1,23656 \dots m$ 

$$\approx 1,24 \text{ m} \checkmark$$
 (4)





(4)

6.2 
$$F_{\parallel} = W \sin 30^{\circ} \checkmark = (70)(9,8) \checkmark \sin 30^{\circ} = 343 \text{ N} \checkmark$$
 (3)

6.3 
$$W_{\text{net}} = F_{\text{net}}\Delta x \checkmark = (F_{\parallel} - F_{\text{f}})\Delta x = (343\checkmark \text{coe} - 150\checkmark)(120\checkmark) = 23160 \text{ J}\checkmark$$
 (5)

- 6.4 The work done by a <u>net force</u>  $\checkmark$  on an object is equal to the <u>change in the kinetic energy</u>  $\checkmark$  of the object. (2)
- 6.5  $W_{net} = \Delta E_k \checkmark = \frac{1}{2} m v_f^2 \frac{1}{2} m v_i^2$

 $23160\checkmark coe = \frac{1}{2} (70\checkmark) v_f^2 - 0\checkmark$ 

$$v_f = 25,72 \text{ m.s}^{-1} \checkmark$$
 (4)

[18]

Question 7 7.1.1  $F_g = m g \checkmark = 3x10^{-3} (9.8) \checkmark = 0.029 N \checkmark$  (3)

7.1.2 
$$F_e = 0,029 \text{ N} (2,94 \times 10^{-2}) \checkmark$$
 (1)

7.1.3 The force between 2 charged bodies  $\checkmark$  is directly proportional to the product of the charges  $\checkmark$  and inversely proportional to the distance between the charges squared  $\checkmark$  (3)

7.1.4 
$$\frac{F = k Q Q}{r^2} \checkmark$$

 $Q^2 = 4,18 \times 10^{-13}$   $\checkmark \checkmark$  (for substitution)

$$Q = 6,47 \times 10^{-7} C \checkmark \checkmark (647 \text{ nC})$$
(4)

(1)

(2)

- 7.1.5 indep variable : charge on ball B ✓
- 7.1.6 see graph : heading  $\checkmark$ Y axis title and unit  $\checkmark$ X axis title and unit  $\checkmark$ Scale (correct and >1/2 grid)  $\checkmark$ Plotted points  $\checkmark\checkmark$ LOBF  $\checkmark$  (7)
- 7.1.7 r much smaller than expected.
   Perhaps balls discharged slightly, ✓✓ so force between them was reduced
   OR mistake in measuring distance ✓ (1/2)
- 7.1.8 r<sup>2</sup> is directly proportional to  $Q_B \checkmark \checkmark$  when F and  $Q_A$  are kept constant.
- 7.2.1 Every particle in the universe attracts every other particle with a force ✓ which is directly proportional to the product of their masses ✓ and inversely proportional to the square of the distance ✓ between their centres.
   (3)

7.2.2 
$$F_{m/e} = \frac{G M m}{r^{2}} \quad \checkmark = \frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 6 \times 10^{22}}{(3.84 \times 10^{8})^{2}} \quad \checkmark$$
$$= \frac{2.4 \times 10^{37}}{1.47 \times 10^{17}}$$
$$= 1.63 \times 10^{20} N \qquad \checkmark \qquad (4)$$

7.2.3 If the  $F_{res}$  on the moon = 0 then  $F_{earth on moon} = F_{sun on moon} \checkmark$ 

$$1,63 \times 10^{20} = \frac{6,67 \times 10^{-11} \times 1,9 \times 10^{30} \times 6 \times 10^{22}}{r^2} \checkmark$$

$$r^2 = \frac{7,6 \times 10^{42}}{1,63 \times 10^{20}} \checkmark$$

$$r^2 = 4,7 \times 10^{22}$$

$$r = 2,2 \times 10^{11} \text{ m} \checkmark$$
[34]

#### **Question 8**

8.1 The total energy  $\checkmark$  supplied per coulomb  $\checkmark$  of charge by the cell. (2)

#### 8.2 Series resistance calculation

$$R=R_{3\Omega}+R_{2\Omega}$$

$$R = 3 + 2 \checkmark$$

$$R=5\,\Omega\checkmark$$

#### Working with emf and internal resistance

$$\varepsilon = I(R + r)$$
  

$$6 = (1,091)(5 + r) \checkmark$$
  

$$r = 0,4995 \dots \Omega$$
  

$$r \approx 0,5 \Omega \checkmark$$

#### 8.3 Using modified emf formula

$$V_{\text{load}} = \varepsilon - Ir$$

$$V_{\text{load}} = 6 - (1,846)(0,4995\dots)$$

 $V_{\rm load} = 5,07792 \dots V$ 

 $V_{\rm load} \approx 5,08 \, {\rm V} \, \checkmark$ 

#### OR Long version! Starting with parallel resistance

$$\frac{1}{R_{\rm p}} = \frac{1}{R_{1\Omega}} + \frac{1}{R_{3\Omega}}$$
$$\frac{1}{R_p} = \frac{1}{1} + \frac{1}{3}$$
$$\frac{1}{R_p} = \frac{4}{3}$$
$$\therefore R_{\rm p} = \frac{3}{4} = 0.75 \,\Omega \checkmark$$

### Equivalent resistance

 $R_{eq} = R_{p} + R_{2\Omega}$  $R_{eq} = 0.75 + 2$ 

Page **11** of **13** 

(4)

August 2016 Trial exam  $R_{eq} = 2,75 \ \Omega \checkmark$ 

#### Using Ohm's Law in the external circuit

| $V_{\text{load}} = IR_{\text{ext}}$                 |     |
|-----------------------------------------------------|-----|
| $V_{\text{load}} = (1,846)(2,75)$                   |     |
| $V_{\rm load} = 5,0765  {\rm V}$                    |     |
| $V_{\text{load}} \approx 5,08  \text{V} \checkmark$ | (3) |
| 8.4.1 Increases                                     | (1) |
|                                                     |     |

8.4.2 Another resistor is added in parallel so external resistance (*R*) and hence total resistance (*R* + *r*) decreases.  $\checkmark$  From  $\varepsilon = I(R + r)$ , total current will increase.  $\checkmark$  From  $V_{\text{internal resistance}} = Ir$ , more energy is used up to overcome internal resistance. This energy is released as heat which will increase the temperature of the the battery.  $\checkmark$  (3)

[13]

9.1.1 
$$\frac{V_p}{N_p} = \frac{V_s}{N_s}$$
  $\checkmark$   $\therefore N_s = \frac{(1000)(36)}{240} \checkmark \checkmark$  = 150 turns  $\checkmark$  (4)

9.1.2 
$$P_{p} = P_{s} \checkmark$$
  

$$or V_{p}I_{p} = P_{s}$$
  

$$(240)(I_{p})\checkmark = 500 \checkmark$$
  

$$\therefore I_{p} = 2,08 \text{ A}$$
(3)

9.1.3 0,5 x 
$$3\checkmark$$
 method = 1,5 kWh  
1,5 x 1,30  $\checkmark$  method = R1,95  $\checkmark$  (3)

- 9.2.1 mechanical energy to electrical energy  $\checkmark$  (1)
- 9.2.2 According to Faraday's law (of electromagnetic induction)  $\checkmark$  the magnet must rotate to cause a <u>changing magnetic flux</u>  $\checkmark$  over time  $\checkmark$  (or rate  $\checkmark$  of change of magnetic flux  $\checkmark$ ) (3)
- 9.2.3 (iii) ✓ (1)
- 9.2.4 FDGHAE  $\checkmark \checkmark$  (2)
- 9.2.5 pedal faster  $\checkmark$  concept (1)
- 9.3.1 alternating current  $\checkmark$ : SLIP RINGS  $\checkmark$  in contact with brushes (2)
- 9.3.2



[23]