

HILTON COLLEGE GRADE 12 TRIALS EXAMINATIONS AUGUST 2018

PHYSICAL SCIENCE: PAPER 1 - MARK SCHEME

1.1	C√✓			
1.2	D√✓			
1.3	A√√			
1.4	B✓✓			
1.5	A√✓			
1.6	A√√			
1.7	B✓✓			
1.8	B✓✓			
1.9	C√√			
1.10	C√√			[20]

QUESTION 2

2.1.3
$$Q\cos(60) = 321,39 \checkmark$$

 $Q = 321,39 / \cos(60);\checkmark$
 $Q = 642,78N \checkmark$ (3)

2.1.4 weight =
$$Psin(50) + Qsin(60)$$
 \checkmark
 $mg = 500sin(50) + 642,78sin(60)\checkmark$
 $m(9,8) = 383,02 + 556,66$
 $m(9,8) = 939,68\checkmark$
 $m = 95,88kg\checkmark$ (4)

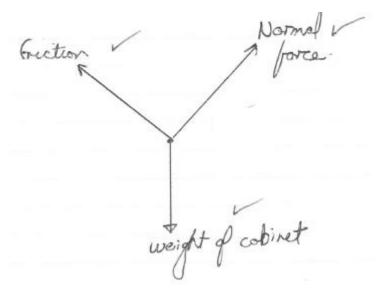
2.2.1 distance =
$$40 + 40 + 40 + 80\checkmark$$
 distance = $200 \text{ m}\checkmark$ (2)

2.2.2 displacement =
$$\sqrt{40^2 + 80^2}$$

displacement = 89,44 m \checkmark

$$tan(\theta) = opp-/ adj;$$
$$= 80 / 40 \checkmark$$

 $\theta = \tan^{-1} (2)$ $\theta = 63,43 \checkmark \text{ S of E} \checkmark$


Displacement =
$$89,44$$
m on a bearing of $153,43$ ⁰ (5)

2.2.3 average speed = distance / time
$$\checkmark$$

= 200 / 25 \checkmark
= 8 m / s \checkmark (3)

- 3.1.1 acceleration is the rate of change of velocity (2)
- 3.1.2 a = slope of v-t graph $a = \frac{8}{8}$ $a = 1 \text{ m·s}^{-2}$ (3)
- 3.1.3 running at a constant velocity ✓ Forwards ✓ (2)
- 3.1.4 distance = area under v-t graph distance = $\frac{1}{2}(8)(8) + (13 - 8)(8) + \frac{1}{2}(17 - 13)(2) + (17 - 13)(6)$ distance = 32 + 40 + 4 + 24distance = 100 m (4)
- 3.1.5 they have the same velocity/speed (1)
- 3.1.6 s = area under graph $100 = \frac{1}{2}(15)(10) + (t - 15)(10)$ 100 = 75 + 10t - 150 $\mathbf{t} = 17,5 \text{ s}$ (4)
- 3.2.1 Springbok exerts force on ground ✓
 Ground exerts force on springbok ✓
 Note: Not force of Earth on springbok as this can be a non-contact force (2)
- 3.2.2 The action reaction pairs act on different objects ✓
 Force of ground on springbok is greater than the weight of the springbok ✓
 (essential point)
 By Newton's 2nd Law, resultant force is upwards ✓
 Produces acceleration in that direction (3)
- 3.2.3 $v^2 = u^2 + 2as$ $v^2 = 0 + 2(35)(0,70)$ $v^2 = 49$ $v = 7 \text{ m} \cdot \text{s}^{-1}$ (3)
- 3.2.4 $v^2 = u^2 + 2\alpha s$ 0 = 49 + 2(-9,8)ss = 2,5 m (3)

4.1 An object continues in its state of rest of uniform velocity ✓ unless it is acted upon by a net or resultant force. ✓ (2)

4.2

(3)

4.3 friction = W_{\parallel}

= mgsinø√

 $= 60 \times 9.8 \times (\sin 30)$

= 294 N
$$\checkmark$$
 up the slope \checkmark (4)

4.4 Fn = WL

= mgcosø√

 $= 60 \times 9.8 \times (\cos 30)$

(3)

4.5 µ= friction / Fn✓

= 294 / 509,22**√**

$$=0.58\checkmark$$

4.6 decreases (No marks for 'decreases UNLESS accompanied by proper reasoning)

4.7 Fnet = mgsinø- friction ✓

 $= 60 \times 9.8 \times \sin(35) - 250$

= 337,26 - 250

= 87,26N✓

Fnet = ma

87,26 = 60a√

$$a = 87,26/60$$

 $a = 1,45 \text{ m/s}^2 \checkmark \tag{5}$

[22]

5.1 The toal linear momentum of an isolated system√ remains constant√ (2)

5.2

$$\begin{array}{rcl} p \ before &=& p \ after \\ m_1 V_{1i} + m_2 V_{2i} &=& m_1 V_{1f} + m_2 \ V_{2f} \\ 3V + 6 \ (0) \checkmark &=& 3 \ (-0,5) + 6 \ (2,25) \ \checkmark \\ 3V &=& -1,5 + 13,5 \\ 3V &=& 12 \\ V &=& 4 \ m.s \ ^{-1} \end{array}$$

5.3

$$F = \frac{\Delta p}{t}$$

$$= \frac{m(vf - Vi)}{t} \checkmark$$

$$= \frac{6(2.25 - 0)}{0.01} \checkmark$$

$$= 1350 \, \text{N} \checkmark$$

5.4 Y to X. ✓ (or down the slope) ... NOT: "down"

(3) (1)

(3)

(4)

- 5.5 The work done by a net force on an object ✓ is equal to the change in the kinetic energy of the object ✓ (2)
- 5.6 Sin \emptyset = opp / hyp = 0,12 / XY

 $XY = 0.12 / Sin \varnothing$ (2)

5.7 $F_{\text{net}} = Fg // \text{slope} + F_{\text{fric}} \checkmark$ $= mg \sin \theta + 10$ $= 6 \times 9.8 \times \sin \theta \checkmark + 10$ $= 58.8 \sin \theta + 10 \checkmark$

5.8

WNET = DKE = EKG - EK; = 0 - 12+6×2,25° = -15,19J

```
5.9
        Mechanical energy at bottom
                                                = mechanical energy at top
        KE (crate) + PE (crate)
                                                = KE (crate) + PE (crate) ✓
        KE (crate – bottom)) +0
                                                = 0 + mgh (crate - top)
        \frac{1}{2} (1,2) v^2
                                                = (1,2)(9,8)(0,65) \checkmark \checkmark
        0.6 \times V^{2}
                                                = 7,644
        V^2
                                                = 12.74
        ٧
                                                = 3,57 m/s√
                                                                                                               (4)
```

5.10
$$W_{eng} + W_{PE} = W_{KE} + W_{friction} \checkmark$$

$$W_{eng} = W_{KE} + W_{friction} - W_{PE}$$

$$= \frac{1}{2} \times 6000 \times (10^{2} - 0^{2}) \checkmark + (25\ 000 \times 360) \checkmark - (6000 \times 9.8 \times 45) \checkmark$$

$$= 300\ 000 + 9\ 000\ 000 - 2\ 646\ 000$$

$$= 6\ 654\ 000$$

$$= 6.65 \times 10^{6}\ J\ \checkmark$$

Note: In order to get the allocated marks the signs applied to the working above need to be correct.

[31]

(5)

Alternate Options for 5.10

OPTION 2:

$$W_{per} = \Delta KE$$

$$W_{fg||} + W_{ans} - W_{f} = \Delta KE - W_{f||} + W_{f}$$

$$= \frac{2}{5}MV^{2} - M_{f}S^{2}M^{2}S^{2}S + F_{f}S$$

$$= \frac{2}{5}(6000.10^{2} - 6000 \times 9.5 \times \frac{15}{3}60 \times 360 + \frac{25005}{3}60)$$

$$= 300 000 - 2646 000 + 9000 000$$

$$= 6,65 \times 10^{6} \text{ J}$$

OPTION 3

$$W_{NC} = \Delta E_{K} + \Delta E_{P}$$

$$W_{ENG} + W_{f} = (E_{K_{f}} - 0) + (0 - E_{p_{f}}).$$

$$W_{ENG} + (25000)(360)(00)(80) = \frac{1}{2}MV_{f}^{2} - Mgh;$$

$$W_{ENG} - 9000000 = (\frac{1}{2}x6000 \times 10^{2}) - (6000 \times 85 \times 45)$$

$$W_{ENG} = 300000 - 2646000 + 9000000$$

$$= 6 654000 J$$

$$W_{ENG} = 6 65 \times 10^{6} J$$

Any two particles in the universe attracts each other with a force that is directly proportional to the product of their mass, but inversely proportional to the square of the distance between them.

(2)

6.2
$$g = G \frac{M}{d^2} \checkmark$$

7,5 = (6,67 x 10⁻¹¹) x M / (590 000)² \checkmark

$$M = 3.90 \times 10^{22} \, \text{kg} \checkmark \checkmark \tag{3}$$

6.3.1 The same
$$\checkmark$$
 (1)

6.4 "The force per unit positive charge"
$$\checkmark\checkmark$$
 (2)

6.5 When the two spheres were in contact, the total charge is distributed evenly between the spheres.

After contact they have the same charge (benea repelling each other with an

After contact they have the same charge ✓ – hence repelling each other with an electrostatic force. ✓

(2)

6.6
$$[-3+(+4)] \div 2\checkmark = 0.5 \text{nC} \checkmark$$

$$F = \frac{kQ_1 Q_2}{r^2} \checkmark$$

$$= \frac{(9\times10^9)(0.5\times10^{-9})(0.5\times10^{-9})}{(48\times10^{-3})^2 \checkmark} \checkmark$$

= 9,77 x
$$10^{-7}$$
 N to the right \checkmark (6)

[17]

Question 7

7.1
$$V_6 = IR \checkmark = 6 \times 0.2 \checkmark$$

= 1.2 V \ (3)

7.2 EMF =
$$V_{int} + V_6 + V_{\parallel}$$

But:
$$V_{int} = IR = 0.2 \times 2 = 0.4 \text{V} \checkmark$$

$$4 = 0.4 + 1.2 + V_{mn} \checkmark
V_{mn} = 4 - (1.2 + 0.4) \checkmark
= 2.4V \checkmark$$
(4)

7.3
$$R = V/I$$

$$= 2.4 \checkmark / 0.2 \checkmark$$

$$= 12 \Omega \checkmark$$
(3)

7.4
$$1/R_t = 1/R_{mn} + 1/R_{KL} \checkmark$$

 $1/12 \checkmark = 1/R_{mn} + 1/_{(12+18)} \checkmark$
 $R_{mn} = 20 \Omega \checkmark$ (4)

7.5
$$I_{KL} = V/R = 2.4 / 30 = 0.08A$$

 $I_{MN} = 0.2 - 0.08$
 $= 0.12A$

$$V_y = 2.4 - 0.4$$

= 2.0V

Ry = V/I =
$$2/0,12$$
 \checkmark Ry = $16,67\Omega$ \checkmark (5)

7.6 NO, power equals brightness. $P = V^2/R \checkmark$ V is the same in the branches \checkmark therefore if R_1 not equal to R_2 then V^2/R_1 is not equal to $V^2/R_2\checkmark$ (3) Or in branches if I is different \checkmark (with same V) but with different resistances \checkmark then P=VI cannot be equal. \checkmark

7.7
$$E = I(R + r);$$

= 2(2 + r) ... \checkmark eqtn (a)
And: ...= 3(1 + r) ... \checkmark eqtn (b)

Equate a and b:

$$4 + 2r = 3 + 3r$$

 $r = 1\Omega \checkmark$
Emf = 2(2 + 1); = 6V \(\frac{4}{2} \)

Question 8

8.1	The induced current flows in a direction to so as to set up a magnetic field ✓ to oppose the change in magnetic flux. ✓	(2)
8.2	Picture A√	(1)
8.3	According to Lenz the top of the coil will be a South pole ✓, therefore current	()
	flows anticlockwise when viewed from above.✓	(2)
8.4	Y✓	(1)
8.5	Two opposing effects as per Lenz's law with,	
	top of coil being N (due to repelling N pole entering the top)✓	
	bottom of coil being N (due to attracting S pole leaving the bottom)✓	
	Opposing effects cancel ✓ and induced emf is 0	(3)
8.6	Kinetic energy of magnet is greater the further it falls; or	
	Speed of bar magnet greater as it leaves√	
	According to farady, greater induced emf due to greater rate of change of	(0)
0.7	flux.	(2)
8.7	AC generator	(2)
8.8	Converts kinetic energy (due to wind) to electrical energy the emf induced is directly proportional to the rate of change of magnetic	(2)
0.0	the emf induced is directly proportional to the rate of change of magnetic flux.	(2)
8.9	Increase strength of magnets	(2)
0.9	Turn coil faster	
	Use more magnets at different angles to each other	
	Increase the number of turns on the coil	
	Use more coils at different angles (any two)√√	(2)
8.10	The coils is not cutting across the field lines√,	(-/
	So there is no flux linkage√	(2)
8.11	ABCD✓	(1)
8.12	1,3, 6, 7, 5, 8 ✓ ✓ (2 marks of 0 marks)	(2)
8.13	Graph 2✓	(1)
		[23]

9.1 the minimum amount of energy needed to emit an electron from the surface of a metal √√(2)

9.2

$$E = \frac{hc}{\lambda}$$

$$E = \frac{(6,6 \times 10^{-34})(3 \times 10^{8})}{296 \times 10^{-9}}$$

$$E = \frac{3 \times 10^{8}}{296 \times 10^{-9}} = 1,01 \times 10^{15}$$
and
$$E = (6,6 \times 10^{-34})(1,01 \times 10^{15})$$

$$E = 6,69 \times 10^{-19} \text{ J}$$

$$E = 6,69 \times 10^{-19} \text{ J}$$

(3)

(2)

9.3 Sodium and Aluminium (-1 per wrong answer listed)

9.4

$$hf = W_0 + E_{K \text{ max}}$$
6, 69 × 10⁻¹⁹ = 3.94 × 10⁻¹⁹ + $E_{K \text{ max}}$

$$E_{K \text{ max}} = 2.75 \times 10^{-19} \text{ J}$$

9.5 No, intensity increases the number of photons/electrons, and energy of electrons of photons/electrons is not affected by intensity. ✓ ✓

OR

No, frequency same, energy not affected by intensity. ✓ ✓ Note: NO MARKS for "NO" ... must be fully explained.

(2)