

PREPARATORY EXAMINATION 2018 MARKING GUIDELINES

PHYSICAL SCIENCES: PHYSICS (PAPER 1) (10841)

13 pages

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION – 2018

PHYSICAL SCIENCES: PHYSICS (Paper 1)

MARKING GUIDELINES

QUESTION 1

1.1 B√√ 1.2 C√√ B√√ 1.3 1.4 D√√ 1.5 B√√ D√√ 1.6 B√√ 1.7 B√√ 1.8 D√√ 1.9 1.10 C ✓ ✓

[20]

(2)

QUESTION 2

- 2.1 The total mechanical energy (sum of the potential energy and kinetic energy) in a system remains constant as long as the only forces acting are conservative forces. $\checkmark\checkmark$
- 2.2 At point A $E_{mech} = E_p + E_k \checkmark$ = mgh + 0 $= 50 \times 9.8 \times 5 \checkmark$ $= 2 \,450 \,J$ At point B $E_{mech} = E_p + E_k$ $2 \,450 = 0 + \frac{1}{2} \,mv_i^2 \checkmark$ $v_i = 9,899 \,m \cdot s^{-1} \checkmark$ (4)
- 2.3 The total linear momentum of a closed system remains constant (is conserved). $\checkmark \checkmark$ (2)

POSITIVE MARKING FROM 2.2

2.4.1 = $\Sigma_{p(before)}$ $\Sigma_{p(after)}$ m_dv_d + $(m_d + m_w)v_c$ $m_w v_w$ = 50 x 9,899 + 0 √ (50 + 60)v_c √ = 4,4995 = V_{c} 4,50 m·s⁻¹ √ = (3) Vc 2.4.2 Impulse, Δp $= m_d \Delta v$ = 50 x (9,899 − 4,4995) √ = 269,98 kg·m·s⁻¹ \checkmark (2) $W_{net} = \Delta E_k$ 2..4.3 = $F_{net} x \Delta x Cos \theta$ = F_{net} x∆xCosθ ✓ E_{kf} - E_{ki} $0 - \frac{1}{2} \times 110 \times 4.50^2 \checkmark$ = 60 x $\Delta x \cos 180^0 \checkmark$ = 18,56 m √ $\Delta \mathbf{X}$ (4) [17]

QUESTION 3

3.3

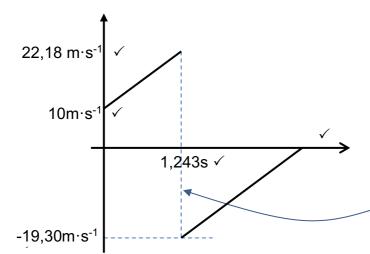
3.1	"free fall" is the motion of a body when the only force acting on the body is	
	gravity/pull due to gravity/its weight. $\checkmark\checkmark$	(2)

3.2
$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $v_f = (10^2 + (2x9,8x20)) \checkmark$
 $= 22,181 \text{ m} \cdot \text{s}^{-1}\checkmark$
(3)

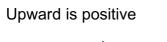
$$v_{f} = v_{i} + a\Delta t \checkmark$$

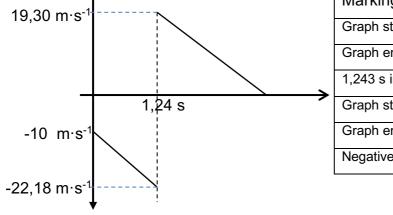
$$\Delta t = \frac{22,181 - 10}{9,8} \checkmark$$


$$= 1,243 \text{ s} \checkmark$$
(3)

Vf ² 0 ² Vi	= $v_i^2 + 2a\Delta y$ = $v_i^2 + 2 (9,8)(-19) \checkmark$ = 19,298 m·s ⁻¹ √	$t_{up} = \frac{v_{f} - v_{i}}{a}$ $= \frac{0 - (-19,298)}{9,8}$ $= 1,969 \text{ s}$	
		- 1,303 3	(3)

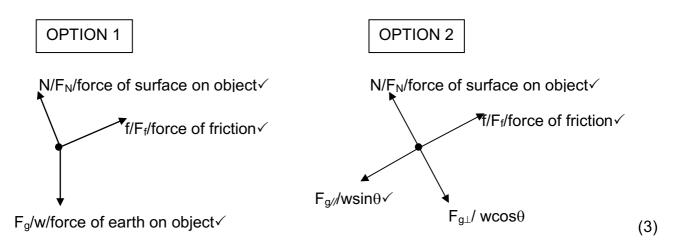
Г


3.5 The decrease in the magnitudes of the velocities, hence the loss in kinetic energy shows that the collision between the ball and the ground is <u>inelastic</u> \checkmark and energy is lost through sound and heat \checkmark (2)


3.6 Down is positive

Marking criteria	
Graph starts at 10 m⋅s⁻¹	\checkmark
Graph ends at 22,18 m⋅s⁻¹	\checkmark
1,243 s indicated	\checkmark
Graph starts at -19,30 m·s⁻¹	\checkmark
Graph ends at v =0, (time 3,212 s)	\checkmark
Positive slope for both graph sections	\checkmark

Accept if this line is tilted


Marking criteria	
Graph starts at 10 m·s ⁻¹	\checkmark
Graph ends at 22,18 m·s ⁻¹	\checkmark
1,243 s indicated	\checkmark
Graph starts at -19,30 m⋅s⁻¹	\checkmark
Graph ends at v =0 (time 3,212 s)	\checkmark
Negative slope for both graph sections	\checkmark

(6) **[19]**

QUESTION 4

4.1 The net/total work done on an object is equal to the change in the object's kinetic energy $\checkmark \checkmark$ (OR the work done on an object by a resultant/ net force is equal to the change in the object's kinetic energy) (2)

4.:

4.3.1 OPTION 1

$$v_{r}^{2} = v_{r}^{2} + 2a\Lambda x'$$

 $= 0^{2} + 2 \times 2 \times 8 \checkmark$
 $v_{r} = 5,657 \text{ m} \text{s}^{-1}$
 $E_{k} = \frac{y}{2} \text{ m} v^{2} \checkmark$
 $= 640,03 \text{ J} \checkmark$
4.3.2 OPTION 1
 $W_{g} = F_{g/}\Delta x \cos\theta \checkmark$
 $= (\text{mg sin } \theta) \Delta x \cos\theta$
 $= 40x9,8 \times \sin 30^{0} \times 8 \times \cos0^{0} \checkmark$
 $= 1568 \text{ J} \checkmark$
 $W_{g} = W_{r} = E_{Kr} - E_{Ki}$
 $1568 + W_{r} \checkmark = 640,03 - 0 \checkmark$
 $\therefore W_{r} = -927,97 \text{ J} \checkmark$ (4)
4.3.4 $W_{r} = F_{r}\Delta x \cos\theta$

(3) **[21]** = 115,996 N ✓

(2)

QUESTION 5

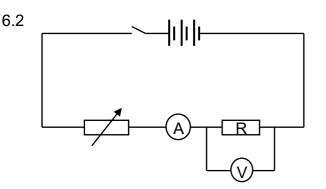
5.1 The Doppler effect is the change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. $\sqrt{\sqrt{}}$

5.2 For car **A**;
$$F_{L} = (\frac{v \pm v_{L}}{v \pm v_{s}})f_{s}$$
, $\checkmark v_{s} = \frac{284,4}{3,6} = 79 \text{ m} \cdot \text{s}^{-1}\checkmark$

$$= (\frac{340 + 0}{340 - 79}\checkmark)1200\checkmark$$

$$= 1563,218 \text{ Hz. }\checkmark (5)$$
5.3 For car **B**; $F_{L} = (\frac{v \pm v_{L}}{v \pm v_{s}})f_{s}$,
 $1600 \checkmark = (\frac{340 + 0}{340 - v_{s}}\checkmark)1170\checkmark$
 $v_{s} = 91,375 \text{ m} \cdot \text{s}^{-1}\checkmark (4)$

- 5.4 With sound
 - The velocity of sound in air is comparable with speed of the ambulance.
 The change in frequency will therefore be significant hence a noticeable change.


With light

The velocity of light is too high compared to the speed of the ambulance. ✓
 The change in frequency will be insignificant hence no noticeable change. ✓
 (4)

[15]

QUESTION 6

6.1 What is the relationship between the potential difference across a resistor and the current through the resistor? $\checkmark \checkmark$

Marking criteria	
Components except voltmeter	\checkmark
connected in series.	
Voltmeter connected across R.	\checkmark
All symbols correct.	\checkmark

(3)

(1)

(1)

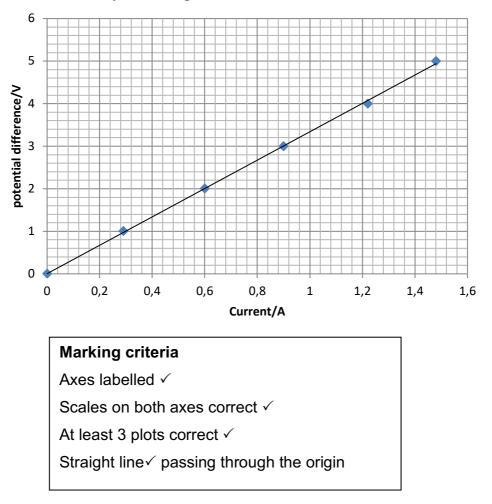
(1)

(2)

- 6.3 6.3.1 Potential difference (V) ✓
 - 6.3.2 Current (*I*) ✓
 - 6.3.3 Temperature of the fixed resistor \checkmark

6.4 Take readings quickly/ allow time between readings so that resistor $cools \checkmark$ (1)

6.5 6.5.1


Potential difference/V ✓	0	1	2	3	4	5
current/A ✓	0	0,29	0,6	0,9	1,22	1,48

All values paired correctly \checkmark

(3)

Graph of voltage vs current for a fixed resistor

(4)

(2)

- 6.5.3 The current through the resistor is directly proportional to the potential difference across the resistor if the temperature of the resistor is kept constant. $\checkmark \checkmark$
- 6.5.4 If V vs I as drawn above, gradient represents magnitude of the resistance of the resistor. ✓
 - If I vs V is plotted, then gradient represents the reciprocal of the resistance of the resistor.

(1) **[19]**

(3)

QUESTION 7 (Start on a new page.)

7.1
$$R_{ext} = \frac{V}{I} \checkmark \quad (V = \text{terminal pd})$$

= $\frac{12}{1,2} \checkmark$
= 10 $\Omega \checkmark$

7.2 Option 1

$$\frac{1}{R_{//}} = \frac{1}{R_4} + \frac{1}{R_6} \checkmark$$

$$R_{//} = \frac{4x6}{4+6} \checkmark$$

$$= 2,4 \Omega$$

$$R = R_T - R_{//} \checkmark$$

$$= 10 - 2,4$$

$$= 7,6 \Omega \checkmark$$

 $\frac{1}{R_{//}} = \frac{1}{R_4} + \frac{1}{R_6}$ $R_{//} = \frac{4x6}{4+6}$ $= 2,4 \Omega$ $V_{//} = R_{//} I$ $=2,4 \times 1,2$ $=2,88 \Omega$ $V_R = 12 - 2,88$ = 9,12 $R = \frac{V_R}{I} = \frac{9,12}{1,2}$ $= 7,6 \Omega$

Option 3

$$\epsilon = I(R_{ext} + r) \checkmark$$

= 1,2 (2,4 + R 1,5) \sqrt{13,8} = 1,2R + 4,68 \sqrt{R} = 7,6 \Omega \sqrt{13}

(4)

Option 1 7.3

Option 2

V _r = Ir = 1,2x1,5 = 1,8 V ✓	$V_{//} = IR_{//} = (1,2)(2,4) = 2,88 V \checkmark$	
∴ emf = V _T + V _r	$V_{II} = IR_{II} = (1,2)(2,4) = 2,88 V \checkmark$ $V_{R} = IR = (1,2)(7,6) = 9,12 V \checkmark$	
= 12 + 1,8 ✓	V _r = 1,8 V	
= 13,8 V 🗸	$emf = V_{//} + V_R + V_r$	
	= 2,88 + 9,12 + 1,88	
	= 13,8 V ✓	
	(max = 3 marks)	
		(3

- (1)
- (2) **[13]**

- 7.4 Increase √
- 7.5 Total resistance decreases ✓ •
 - Current increases√ •

(1)

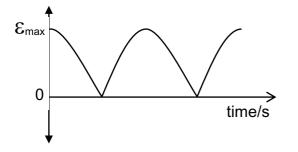
(1)

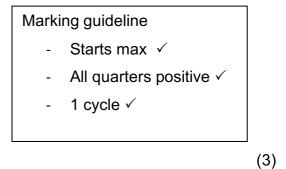
QUESTION 8

- 8.1 DC (generator) \checkmark (1)
- 8.2 split ring commutator \checkmark

8.4 rms current is that a.c. current that would have the same effect as its dc equivalent $\checkmark \checkmark OR (I_{rms} = \frac{V_{max}}{\sqrt{2}})$ (2)

8.5


$$V_{rms} = \frac{V_{max}}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 5,657 \, V \,\checkmark$$


$$I_{rms} = \frac{V_{rms}}{R} \,\checkmark$$

$$= \frac{5,657}{5} \,\checkmark$$

$$= 1,131 \, A \,\checkmark$$
(4)

8.6.1

8.6.2 No √

8.6.3 induced emf drives current through the conductors \checkmark such that emf and current are in phase, \checkmark therefore shape of graphs is the same. (2)

[15]

(1)

QUESTION 9

- 9.1 The photoelectric effect is a phenomenon whereby electrons are ejected \checkmark from a metal surface when light (EM radiation) with a frequency equal to or greater than the threshold frequency of the metal is shone on it. \checkmark (2)
- 9.2 Work function is the minimum energy that an electron in the metal needs to be emitted from the metal surface. $\sqrt{\sqrt{}}$

9.3
E = hf_o = h
$$\frac{c}{\lambda_o} \checkmark$$

= 6,63 x 10⁻³⁴ \checkmark x $\frac{3 \times 10^8}{600 \times 10^{-9}} \checkmark$
= 3,315 x 10⁻¹⁹ J \checkmark (4)

- 9.4 Yes √
- 9.5 Frequency of blue light is much higher than that of orange light ✓ making blue light photons carry more than sufficient energy to eject photoelectrons from the metal surface√

OR

Since W_0 is constant the additional energy is transferred to the photoelectrons as kinetic energy. Therefore the ammeter will register a reading.

(2) [11]

(1)

(2)

TOTAL: 150