CAPE WINELANDS EDUCATION DISTRICT

GRADE 12

MARKS 150

TIME 3 hours

2 CAPS

QUESTION 1		
1.1	A√√	(2)
1.2	A√√	(2)
1.3	D√√	(2)
1.4	A√√	(2)
1.5	D√√	(2)
1.6	C√√	(2)
1.7	A √√.	(2)
1.8	B√√	(2)
1.9	B√√	(2)
1.10	C√√	(2)
		[20]
QUESTION 2		
2.1	When a resultant/net force acts on an object, the object will accelerate in the direction of the force \checkmark the acceleration is directly proportional to the force and inversely proportional to the mass of the object. \checkmark	(2)
2.2	Tension in rope ✓ kg Gravitational force ✓ Tension < Gravitational force ✓	(3)
2.3	downward = positive (clockwise) $F_{tension} + F_{gravitation} = F_{resultant} \checkmark$ $F_{tension} + (2)(9,8) = 2(3) \checkmark$	(3)

	$F_{tension} = -13.6 \text{ N}$ $F_{tension} = 13.6 \text{ N} \checkmark upward$	
2.4	Right = positive (clockwise) $F_{rope} + F_{friction} = F_{resultant} \checkmark$ 13,6 N + $F_{friction} = 4(3) \checkmark$ $F_{friction} = -1,6$ N Magnitude of friction force: 1,6 N \checkmark	(3)
2.5	The force that the rope exerts on the box \checkmark and the force that the box exerts on the rope. \checkmark OR the force that the Earth exerts on the box and the force that the box exerts on the Earth.	(2)
		[13]
QUEST	ION 3	
3.1	The product of the resultant/net force acting on an object and the time the resultant/net force acts on the object. $\checkmark\checkmark$	(2)
3.2	Right = positive $F \varDelta t = m \varDelta v = m(v_f - v_i) \checkmark$ (or other correct form of the equation) $F(0,1) = 0.4[1,49 - (-6)]\checkmark$ $F = 29,96 N \checkmark$	(3)
3.3	The total linear momentum of a closed system \checkmark remains constant (is conserved) \checkmark	(2)
3.4	$\begin{split} m_1 v_{1i} + m_2 v_{2i} &= (m_1 + m_2) \ v \checkmark (\text{Right} = \text{positive}) \\ 50 v_{1i} + (0,4)(-6) &= 50,4(1,49) \checkmark \\ v_{1i} &= 1,55 \ \text{m} \cdot \text{s}^{-1} \checkmark \end{split}$	(3)
3.5	Total kinetic energy before collision: $\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2$ = (0,5)(50)(1,55) ² + (0,5)(0,4)(-6) ² \checkmark =67,26 J \checkmark Total kinetic energy after collision: $\frac{1}{2} (m_1 + m_2) v^2$ = (0,5)(50,4)(1,49) ² \checkmark = 55,95 J \checkmark E _{k before} \neq E _{k after} \checkmark <i>inelastic</i> collision.	(5)
		[15]

4

CAPS

QUESTI	ON 4	
4.1	$v_f^2 = v_i^2 + 2 g \Delta y \checkmark$ (Upwards = positive) $v_f^2 = (8)^2 + 2(-9,8)(2) \checkmark$ $v_f = 4,98 \text{ m} \cdot \text{s}^{-1} \checkmark$	(3)
4.2	Time it took to reach the ceiling: $v_f = v_i + gt \checkmark$ $4,98 = 8 + (-9,8)t\checkmark$ t = 0,31 s. Therefore: time it took for ball to bounce back: $0,65 - 0,31 = 0,34 \text{ s}\checkmark$ initial velocity of the ball when it bounce back: $\Delta y = v_i t + \frac{1}{2} gt^2\checkmark$ $2 = v_i(0,34) + (0,5)(9,8)(0,34)^2\checkmark$ $v = 4,22 \text{ m}\cdot\text{s}^{-1}\checkmark$.	(6)
4.3	<pre></pre>	(5)
		[14]
QUESTION 5		
5.1	A force for which the work done in moving an object between two points depends on the path taken/is not independent of the path taken \checkmark	(2)
5.2	∿ L 0	(1)
5.3	Fg// - (f + F) = 0 ✓ (Accept other correct symbols) OR/OF F = mg sin θ – f _k OR/OF F = mgsin θ – 266 F = [100(9,8) sin 25°] ✓ – 266 ✓	

(4)	
(6)	

	$\begin{array}{c} \hline \textbf{OPTION 5/OPS/E5} \\ \textbf{POSITIVE MARKING FROM QUESTION 5.3} \\ \textbf{POSITIEWE NASIEN VANAF VRAAG 5.3} \\ \hline \textbf{F}_{net} = ma \checkmark \\ 148,17 \checkmark = 100a \checkmark \\ a = 1,48 \text{ m/s}^2 \\ \hline \Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \\ \exists = 0 + \frac{1}{2} (1,48) \Delta t^2 \\ \Delta t = 2,01 \text{ s} \\ \hline \textbf{v}_I = \textbf{v}_i + a \Delta t \\ = 0 + (1,48) (2,01) \checkmark \\ \hline \textbf{v}_I = 2,97 \text{ m/s}^{-1} \checkmark \\ \hline \hline \textbf{OPTION 6/OPS/E6} \\ \textbf{POSITIVE MARKING FROM QUESTION 5.3} \\ \textbf{POSITIVE MARKING FROM QUESTION 5.3} \\ \textbf{POSITIVE MARKING FROM QUESTION 5.3} \\ \hline \textbf{PosiTIVE MARKING FROM QUESTION 5.4} \\ \hline \textbf{A}_{1} + \frac{1}{2} a \Delta t^2 \\ \exists = 0 + \frac{1}{2} (1,48) \Delta t^2 \\ dt = 2,01 \text{ s} \\ \hline \textbf{A}_{2} = \left(\frac{V_{-1} + V_{-1}}{2}\right) \Delta t \\ \exists = \left(\frac{0 + V_{-1}}{2}\right) (2,01) \\ \hline \textbf{v}_{1} = 2,99 \text{ m/s}^{-1} \checkmark \end{array}$	
		[13]
QUEST	ION 6	
6.1.1	The change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation \checkmark	(2)
6.1.2	increase 🗸	(1)
6.1.3	As the police officer move closer to the alarm, he would observe a sound with a shorter wavelength \checkmark than was originally omitted. Since the wavelength is inversely proportional to the frequency of the wave, the frequency will increase (become more / higher). \checkmark	(2)
6.1.4	$f_L = \frac{v + v_L}{v} f_s \checkmark \text{ (OR Formula as on data sheet)}$ = $\frac{340 + 40}{340} \checkmark (1200) \checkmark$ = 1 341, 18 Hz \checkmark	(4)

6.2.1	An atomic absorption spectrum is formed when certain frequencies of electromagnetic radiation <u>that passes through a medium</u> \checkmark , e.g. a cold gas, is <u>absorbed</u> . \checkmark An atomic emission spectrum is formed when certain frequencies of electromagnetic radiation are <u>emitted</u> \checkmark due to an atom's electrons making a transition from a high-energy state to a lower energy state. \checkmark	(4)
6.2.2	The absorbed electromagnetic radiation for the light from Andromeda <u>appear</u> at higher frequencies than the absorbed electromagnetic radiation for light from the Sun. \checkmark	(1)
6.2.3	Blue shift 🗸	(1)
		[15]
QUEST	ON 7	
7.1	The magnitude of the electrostatic force exerted by one point charge (Q_1) on another point charge (Q_2) is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them: $\checkmark \checkmark$	(2)
7.2	$F = \frac{kQ_1Q_2}{r^2} \checkmark$ 7,2 x 10 ⁻⁶ = $\frac{9 \times 10^9 \times Q \times 16 \times 10^{-9}}{(0,4)^2} \checkmark$ Q _A = -8 nC. \checkmark	(3)
7.3	Electric field at P due to A $E = \frac{kQ}{r^2}\checkmark$ $= \frac{9 \times 10^9 \times 8 \times 10^{-9}}{(0,3)^2}\checkmark$ $= 800 \text{ N} \cdot \text{C}^{-1} \checkmark$ Electric field at P due to B $E = \frac{9 \times 10^9 \times 16 \times 10^{-9}}{(0,7)^2}\checkmark$ $= 293,88 \text{ N} \cdot \text{C}^{-1}\checkmark$ $800 + 293,88 = 1 093,88 \text{ N} \cdot \text{C}^{-1}\checkmark$	(6)
7.4	B TO A√	(1)
7.5	$\frac{8nC + 16nC}{2} = 12 \text{ nC}\checkmark$ 4 nC electrons were transferred from B to A \checkmark $\frac{4 \times 10^{-9}}{1.6 \times 10^{-19}} \checkmark = 2.5 \text{ x } 10^{10} \checkmark \text{ electrons}$	(4)
		[16]

QUESTION 8		
8.1	The potential difference across a conductor is directly proportional to the current in the conductor \checkmark at constant temperature. \checkmark	(2)
8.2	Negative 🗸	(1)
8.3	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark$ $\frac{1}{R} = \frac{1}{4} + \frac{1}{2} \checkmark$ $R = 1,33 \Omega \checkmark$	(3)
8.4	$V = IR \checkmark$ $3,9 = I \times 1,33 \checkmark$ $I = 2,925 A \checkmark$ $\varepsilon = IR + Ir \checkmark$ $6 = 3,9 + 2,925 r \checkmark$ $r = 0,72\Omega \checkmark$	(6)
8.5	$\frac{2.925}{3} \checkmark = 0.975 \text{ A.} \checkmark$ or $V = IR$ $3.9 = I (4) \checkmark$ $I = 0.975 \text{ A} \checkmark$	(2)
8.6.1	Increase√	
8.6.2	Stays the same 🗸	(1)
8.7	$\varepsilon = I(R + r)\checkmark$ 6 = I (4 + 0,72) \checkmark I = 1,27 A \checkmark	(3)
		[19]
QUESTION 9		
9.1.1	Generator 🗸	(1)
9.1.2	Kinetic/mechanical energy $\checkmark \rightarrow$ electrical energy \checkmark	(2)
9.1.3	B to A 🗸	(1)
9.1.4	DC 🗸	(1)

9.1.5	The split ring commutator ensures \checkmark that the current that passes through to the external circuit is always in the same direction. \checkmark	C	(2)
9.1.6	Use a coil that consist of more windings ✓ Increase the strengths of the magnets.✓		(2)
9.2.1	The rms value of AC is the DC potential difference which dissipates the same amount of energy as AC \checkmark \checkmark	e	(2)
9.2.2	$V_{\rm rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$ $= \frac{39,45}{\sqrt{2}} \checkmark$ $= 27,9 \ \lor \checkmark$		(3)
9.3	It can be stepped up or stepped down / is easier to transmit \checkmark		(1)
			[15]
QUESTI	ION 10		
10.1.1	Photoelectric effect 🗸.		(1)
10.1.2	W _o = hf _o ✓ = 6,63 x 10 ⁻³⁴ x 4,389 x 10 ¹⁴ ✓ = 2,91 x 10 ⁻¹⁹ J ✓		(3)
10.1.3	E = hf = 6,63 x 10 ⁻³⁴ x 4,83 x 10 ¹⁴ = 3,2 x 10 ⁻¹⁹ J $E = hf_o + \frac{1}{2} mv^2 \checkmark$ 3,2 x 10 ⁻¹⁹ \checkmark = 6,63 x 10 ⁻³⁴ x 4,39 x 10 ¹⁴ + (0,5)(9,11 x 10 ⁻³¹) v ² \checkmark v = 2,5 x 10 ⁵ m·s ⁻¹ \checkmark		(4)
10.2.1	Increase 🗸		(1)
10.2.2	increase√		(1)
			[10]
	ΤΟΤΑΙ	-	[150]