

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION 2016

10841

PHYSICAL SCIENCES: PHYSICS

FIRST PAPER

TIME: 3 hours

MARKS: 150

16 pages and 3 data sheets

PHYSICAL SCIENCES: PHYSICS

(First Paper) 10841/16

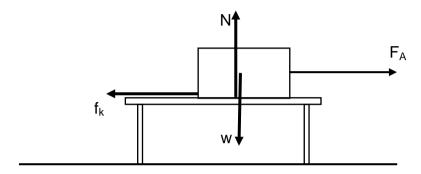
2

GAUTENG DEPARTMENT OF EDUCATION
PREPARATORY EXAMINATION

PHYSICAL SCIENCES: PHYSICS (First Paper)

TIME: 3 hours

MARKS: 150


INSTRUCTIONS AND INFORMATION

- 1. Write your name in the appropriate space on the ANSWER BOOK.
- This question paper consists of 10 questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start the answer to each question on a NEW page.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line open between sub-questions, for example between Question 2.1 and Question 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- 11. Give brief discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.10) in the ANSWER BOOK, for example 1.11 C.

1.1 The diagram below shows a box being pulled by force F_A along a horizontal surface. The box slides towards the right at constant velocity.

Which ONE of the following statements about the forces acting on the box is correct?

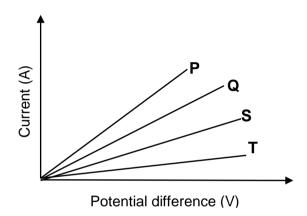
- Α N is greater than w.
- В w is greater than N.
- C F_A is greater than f_k .
- D F_A is equal to f_k .

(2)

- 1.2 The magnitude of the impulse on a ball bouncing off a wall is equal to the ...
 - Α net force of the ball on the wall.
 - В product of the net force on the ball and the time it acts.
 - C change in velocity of the ball.
 - D product of the mass and the acceleration of the ball.

(2)

- 1.3 When a bus suddenly accelerates from rest, standing passengers tend to fall backwards. This observation is best explained using ...
 - Α Newton's first law of motion.
 - В Newton's second law of motion.
 - C Newton's third law of motion.
 - D Newton's law of universal gravitation.


(2)

PHYSICAL SCIENCES: PHYSICS	3
(First Paper)	10841/16

- 4
- 1.4 Which ONE of the following will NOT increase the output current of a generator?
 - A Increase the number of turns in the coil.
 - B Wind the armature coil around an aluminium core.
 - C Increase the speed of rotation of the armature coil.
 - D Increase the strength of the magnet.

(2)

1.5 The current versus potential difference graphs below were obtained for four resistors **P**, **Q**, **S** and **T**.

The resistor with the second largest resistance is:

- **A P**
- B **Q**
- C **S**
- **D T**

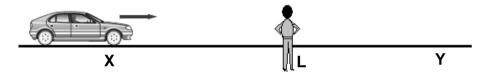
(2)

1.6 A metallic surface emits photoelectrons when irradiated with green light.

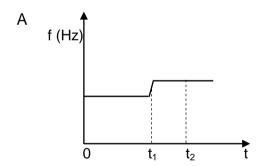
When the green light is replaced by ultraviolet light, the kinetic energy (E_k) of the emitted photoelectrons will ...

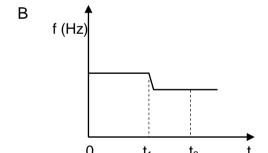
- A increase.
- B decrease.
- C drop to zero.
- D remain the same.

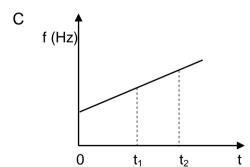
(2)

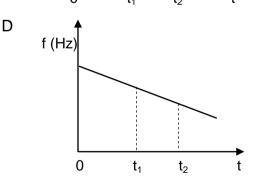

(2)

1.7 Two objects attract each other with a force of magnitude **F** when they are a distance **r** apart.

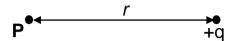

If each mass is TRIPLED (3 times larger), the new gravitational force that the one object exerts on the other will be:


- A 9**F**
- B 18**F**
- C 24**F**
- D 36**F**


1.8 A car sounds its horn whilst travelling at constant velocity along a straight road. At time t = 0 the car is at position \mathbf{X} as shown below. At time $t = t_1$ the car moves past a stationary listener \mathbf{L} . At time $t = t_2$ the car is at position \mathbf{Y} .

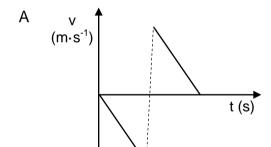


Which ONE of the following graphs best represents the variation of the frequency (pitch) of the horn with time as heard by the listener?

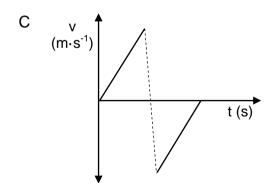


(2)

Point **P** is situated a distance r from point charge q as shown below. The electric field at point **P** due to point charge q is found to be E.


The electric field at point **Q** which is on a distance $\frac{1}{3}r$ from point charge q will be:

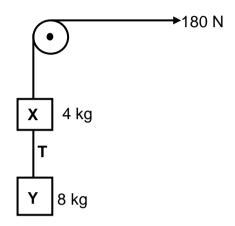
- A $\frac{1}{9}E$
- B $\frac{1}{3}E$
- C 3*E*
- D 9*E*


(2)

1.10 A ball is dropped to the ground from a certain height and bounces back to the same height. Which ONE of the following velocity versus time graphs represents the motion of the ball if downwards is taken as positive.

D

t (s)

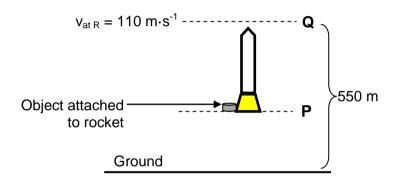


(2) **[20]**

PHYSICAL SCIENCES: PHYSICS	
(First Paper) 10841/16	•

QUESTION 2 (Start on a new page.)

Block **X** of mass 4 kg is connected to block **Y** of mass 8 kg by a light, inextensible string. Another light, inextensible string attached to block **X** runs over a frictionless pulley. The system is pulled by means of a constant force of 180 N as shown in the diagram below. Ignore the effects of air resistance.


- 2.1 State Newton's second law of motion in words. (2)
- 2.2 Draw a labelled free body diagram showing ALL the forces acting on object **X.** (3)
- 2.3 Calculate the:
 - 2.3.1 tension **T** in the string connecting the two blocks. (4)
 - 2.3.2 magnitude of the acceleration of block **X**. (2) [11]

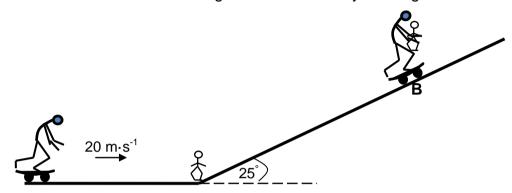
PHYSICAL SCIENCES: PHYSICS	
(First Paper) 10841/1	16

QUESTION 3 (Start on a new page.)

A stationary rocket on the ground is launched vertically upwards. When it is 550 m above the ground (point **Q**), an object is released from the rocket. At this instant the velocity of the rocket is 110 m·s⁻¹. The object reaches its MAXIMUM height ABOVE ground at point **R**. Ignore the effects of air friction.

- 3.1 Give a reason why the object keeps moving upwards after it is released from the rocket. (1)
- 3.2 What is the direction of the acceleration of the object at:

- 3.3 **ONLY** use EQUATIONS OF MOTION to calculate the time taken by the OBJECT to:
 - 3.3.1 reach its maximum height after being released from the rocket at (3) point \mathbf{Q} .
 - 3.3.2 reach the ground after being released from the rocket at point **Q**. (4)
- 3.4 Sketch the velocity versus time graph for the complete motion of the object. On the graph indicate the following:
 - Initial velocity.
 - Time to reach its maximum height.
 - Time when it reaches the ground. (4) [14]


10841/16

9

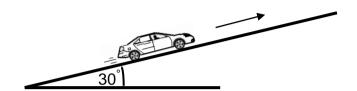
QUESTION 4 (Start on a new page.)

A roller-skater approaches an inclined plane at a constant velocity of 20 m·s⁻¹ as shown below. Just before reaching the incline, he picks up a boy standing in his way and then continues up the incline and reaches point **B**.

The total mass of the roller skater is 68 kg and that of the boy is 12 kg.

- 4.1 State the principle of conservation of linear momentum.
- 4.2 Calculate the magnitude of the combined velocity of the roller-skater and the boy just after the boy is picked up.
- (4)

(2)


- 4.3 Use energy principles to calculate the distance that they will move up the incline before coming to a stop at point **B**. Ignore the effects of friction.
- (5)
- 4.4 How will the answer to QUESTION 4.3 be affected if friction between the wheels of the roller-skate and the surface is NOT ignored?
 - Choose from INCREASES, DECREASES or REMAINS THE SAME. Give a reason for the answer.

(2) [**13**]

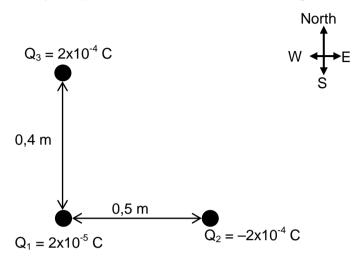
10841/16

QUESTION 5 (Start on a new page.)

A car of mass 700 kg moves up a rough inclined plane as shown in the diagram below.

- 5.1 What is the net work done on the car if the car moves up the inclined plane at CONSTANT velocity? (1)
- 5.2 Draw a labelled free body diagram showing all the forces acting on the car as it moves up the inclined plane. (4)
- 5.3 The car now starts from rest at the base of the slope and accelerates up the inclined plane. The car's engine exerts a force of 6 000 N and the coefficient of kinetic friction between the wheels of the car and surface is 0,32.
 - 5.3.1 State the work-energy theorem in words. (2)
 - 5.3.2 Use energy principles to calculate the magnitude of the velocity of the car after moving a distance of 70 m up the incline. (8)

 [15]

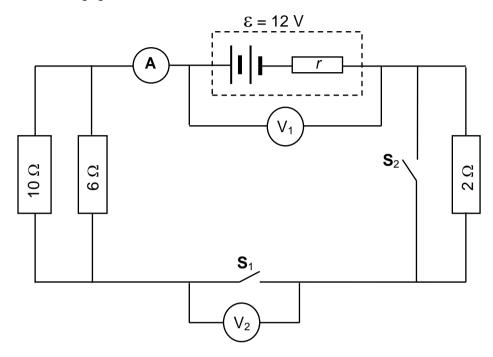

QUESTION 6 (Start on a new page.)

- 6.1 A flying bat emits sound waves at a frequency of 75 Hz. A stationary observer detects the frequency of the sound waves emitted as 73 Hz. The speed of sound in air is 340 m·s⁻¹.
 - 6.1.1 State the Doppler Effect in words. (2)
 - 6.1.2 Is the bat flying TOWARDS or AWAY from the observer? (1)
 - 6.1.3 Calculate the speed at which the bat is flying. (4)
- 6.2 Briefly explain the observations that enable scientists to tell that the universe is expanding. (4)
- 6.3 State TWO applications of the Doppler Effect in medicine. (2) [13]

PHYSICAL SCIENCES:	PHYSICS	
(First Paper)	10841/16	

QUESTION 7 (Start on a new page.)

Three charges Q_1 , Q_2 and Q_3 carrying charges of +2 x 10 $^{-5}$ C, -2 x 10 $^{-4}$ C and +2 x 10 $^{-4}$ C respectively are positioned as shown in the diagram below.



- 7.1 State Coulomb's Law in words. (2)
- 7.2 Draw a diagram that shows the electrostatic forces exerted on $\mathbf{Q_1}$ by $\mathbf{Q_2}$ and $\mathbf{Q_3}$. (2)
- 7.3 Calculate the net electrostatic force exerted on $\mathbf{Q_1}$ by $\mathbf{Q_2}$ and $\mathbf{Q_3}$. (7) [11]

PHYSICAL SCIENCES: PHYSICS	12
(First Paper) 10841/16	

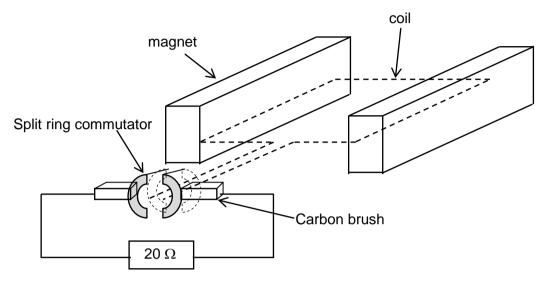
QUESTION 8 (Start on a new page.)

The battery in the circuit represented below has an emf of 12 V and an internal resistance r. Voltmeter V_1 is connected across the battery. The resistance of the connecting wires is negligible.

Switches S_1 and S_2 are both open.

- 8.1 Write down the reading on voltmeter V_2 . (1)
- 8.2 Switch S_1 is now closed. Switch S_2 remains open. The reading on V_1 is now 10 V.

Calculate the:


- 8.2.1 total external resistance of the circuit. (4)
- 8.2.2 internal resistance of the battery. (5)
- 8.3 Both switches S_1 and S_2 are now closed.

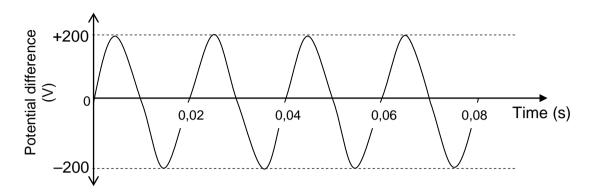
How will the reading on the ammeter be affected? CHOOSE from INCREASES, DECREASES or REMAINS THE SAME. Explain the answer. (3)

[13]

QUESTION 9 (Start on a new page.)

The diagram below shows the essential parts of a generator.

9.1 The coil rotates within the magnetic field.

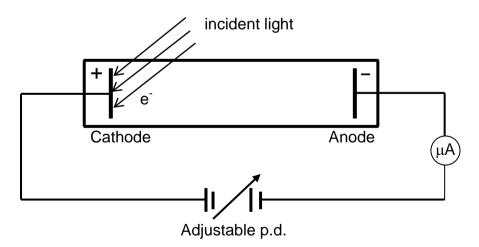

Write down the type of current (AC or DC):

- 9.1.1 Induced in the coil. (1)
- 9.1.2 Passing through the 20 Ω resistor. Give a reason for the answer. (2)
- 9.2 An AC generator is used in the commercial production of electricity.
 - 9.2.1 State ONE fundamental difference in construction between an AC generator and a DC generator. (2)
 - 9.2.2 Fully explain why AC is preferred to DC for transmission of electricity over long distances. (3)

PHYSICAL SCIENCES: PHYSICS (First Paper) 10841/16

14

9.3 The diagram below shows the output of an AC generator. A 20 Ω resistor is connected in the circuit.



Calculate the:

- 9.3.1 frequency of the power source. (2)
- 9.3.2 average power dissipated in the resistor. (5) [15]

QUESTION 10

Incident light of different wavelengths was shown on a metal cathode in an evacuated tube as shown in the diagram below.

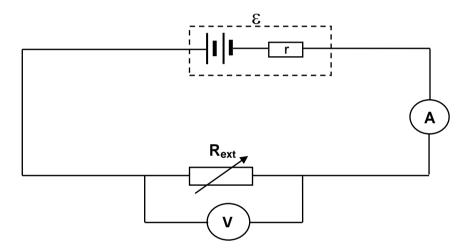
It was found that light of 500 nm releases electrons with zero kinetic energy. The microammeter gives a zero reading.

- 10.1 Define the term *work function*. (2)
- 10.2 Calculate the work function of the metal used as cathode. (5)

PHYSICAL SCIENCES: PHYSICS		15
(First Paper)	10841/16	

10.3 How will each of the following affect the reading on the micro-ammeter?

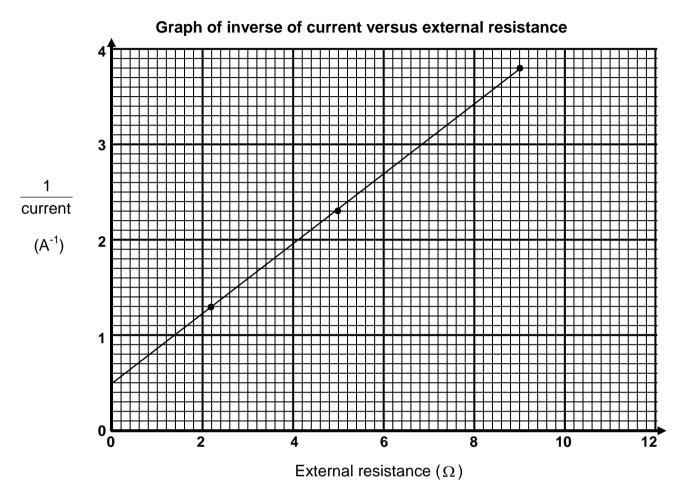
Choose from INCREASES, DECREASES or REMAINS THE SAME.


- 10.3.1 The intensity of the light is increased. (1)
- 10.3.2 Light of a wavelength 550 nm is used. (1)

The metal cathode is now irradiated with light of wavelength 400 nm.

10.4 Calculate the maximum kinetic energy of an emitted photo-electron. (5) [14]

QUESTION 11 (Start on a new page.)


A learner set up the circuit shown below to measure the internal resistance of a battery.

PHYSICAL SCIENCES: PHYSICS (First Paper) 10841/16

16

She records the readings on the voltmeter and ammeter for different resistances of the rheostat. The graph below was obtained from the results.

- 11.1 Define the term *emf*. (2)
- 11.2 Calculate the gradient of the above graph. (3)
- 11.3 What is represented by the gradient in QUESTION 11.2? (1)
- 11.4 Use the information on the graph to calculate the:

11.4.1 emf of the battery. (2)

11.4.2 internal resistance of the battery. (3)
[11]

GRAND TOTAL: 150

PHYSICAL SCIENCES: PHYSICS (First Paper) 10841/16

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m⋅s ⁻²
Universal gravitational constant Universele gravitasiekonstante	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Radius of the Earth Radius van die Aarde	R _E	6,38 x 10 ⁶ m
Mass of the Earth Massa van die Aarde	M _E	5,98 x 10 ²⁴ kg
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J⋅s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op elektron	е	−1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

PHYSICAL SCIENCES:	PHYSICS
(First Paper)	108

10841/16

18

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{or/of} \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x$ or/of	$\Delta x = \left(\frac{v_i + v_f}{v_i}\right) \Delta t$ $\Delta y = \left(\frac{v_i + v_f}{v_i}\right) \Delta t$
$v_f^2 = v_i^2 + 2a\Delta y$	$\begin{array}{c c} 2 & \text{or/of} \\ \end{array}$

FORCE

F _{net} = ma	p= mv
$f_s^{\text{max}} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	
$\Delta p = mv_f - mv_i$	w = mg
$F = G \frac{m_1 m_2}{d^2}$ or/of $F = G \frac{m_1 m_2}{r^2}$	$g = G \frac{M}{d^2}$ or/of $g = G \frac{M}{r^2}$

WORK, ENERGY AND POWER

$W = F\Delta x \cos \theta$	U= mgh	or/of	$E_P = mgh$
$K = \frac{1}{2} mv^2$ or/of $E_k = \frac{1}{2} mv^2$	$W_{net} = \Delta K$		
2 2	$\Delta K = K_f - K_i$	or/of	$\Delta E_k = E_kf - E_ki$
$W_{nc} = \Delta K + \Delta U \text{ or/of } W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{W}{\Delta t}$		
$P_{ave} = Fv_{ave}$ / $P_{gemid} = Fv_{gemid}$			

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$	
$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \qquad f_{L} = \frac{v \pm v_{L}}{v \pm v_{b}} f_{b}$	$E = hf$ or $/of$ $E = \frac{hc}{\lambda}$	
$E = W_o + E_{k(max)}$ or/of $E = W_o + K_{max}$ where/waar		
$E = hf$ and/ en $W_0 = hf_0$ and/ en $E_{k(max)} = \frac{1}{2}mv_{max}^2$ or/of $K_{max} = \frac{1}{2}mv_{max}^2$		

PHYSICAL SCIENCES: PHYSICS	19
(First Paper) 10841/16	. •

ELECTROSTATICS/ELEKTROSTATIKA

$F = \frac{kQ_1Q_2}{r^2}$	$E = \frac{kQ}{r^2}$
$V = \frac{W}{q}$	$E = \frac{F}{q}$
$n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$R = \frac{V}{I}$	emf $(\varepsilon) = I(R + r)$			
I I	$emk(\epsilon) = I(R + r)$			
$R_{s} = R_{1} + R_{2} + \dots$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	$q = I\Delta t$			
W = Vq	$P = \frac{W}{\Delta t}$			
$W = VI \Delta t$				
$W = I^2 R \Delta t$	P = VI			
$V^2\Lambda t$	$P = I^2R$			
$W = \frac{V^2 \Delta t}{R}$	$P = I^{2}R$ $P = \frac{V^{2}}{R}$			

ALTERNATING CURRENT/WISSELSTROOM

I I I I	,	$_{ t I}$ $_{ t L_{ t maks}}$	$P_{\text{ave}} = V_{\text{rms}} I_{\text{rms}}$	/	$P_{gemiddeld} = V_{wgk} I_{wgk}$
$I_{\text{rms}} = \frac{1}{\sqrt{2}}$	1	$I_{\text{wgk}} = \frac{111000}{\sqrt{2}}$	$P_{\text{ave}} = I_{\text{rms}}^2 R$	/	$P_{\text{gemiddeld}} = I_{\text{wgk}}^2 R$
$V_{rms} = \frac{V_{max}}{\sqrt{2}}$	/	$V_{wgk} = \frac{V_{maks}}{\sqrt{2}}$	$P_{\text{ave}} = \frac{V_{\text{rms}}^2}{R}$	/	$P_{gemiddeld} = \frac{V_{wgk}^2}{R}$