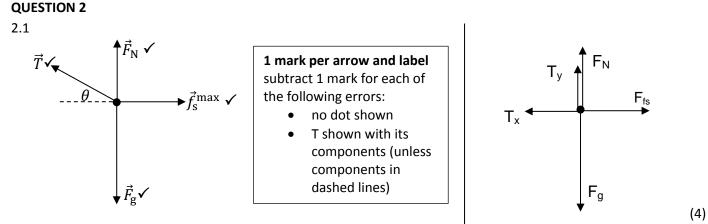


WCED Metro Central Common Paper

Physical Sciences Paper 1

September 2016

MARKING MEMORANDUM


QUESTION 1

- 1.1 D ✓ ✓
- 1.2 D ✓ ✓
- 1.3 C√√
- 1.4 A ✓ ✓
- 1.5 B ✓✓
- 1.6 B ✓✓
- 1.7 A ✓✓
- 1.8 C ✓✓
- 1.9 D ✓ ✓
- 1.10 C ✓ ✓

[20]

(2)

(5)

2.2 When a <u>resultant (net) force</u> acts on an object, the object will accelerate in the direction of the force. <u>This</u> acceleration is directly proportional to the force \checkmark and <u>inversely proportional to the mass</u> \checkmark of the object.

```
OR
```

The resultant/net force acting on an object is equal to the rate of change of momentum of the object $\sqrt{\sqrt{}}$ in the direction of the resultant/net force. (2 or 0)

2.3 $f_{s}^{\max} = \mu_{s}F_{N} \checkmark$ $120 = (0,34)F_{N} \checkmark$ $F_{N} = 352,9412 N$

Vertical forces; taking up as positive

$$\vec{F}_{net,y} = 0$$

$$\vec{T}_{y} + \vec{F}_{N} + \vec{F}_{g} = 0 \checkmark$$

$$Ty + F_{N} - mg = 0$$

$$Ty + 352,9412 \checkmark - (50)(9,8) \checkmark = 0$$

$$Ty = 137,06 N$$

......(A)

2.4 Horizontal forces; taking left as positive

(A) / (B):

$$\tan \theta = \frac{137,00}{120} = 1,14215 \dots \\
\theta = 48.80^{\circ} \checkmark$$

Sub into (B)ORSubst into (A) $T \cos(48,8^{\circ}) = 120$ $T \sin(48,8^{\circ}) = 137,06$ T = 182,18 N \checkmark T = 182,16 N

2.5.1 DECREASES \checkmark

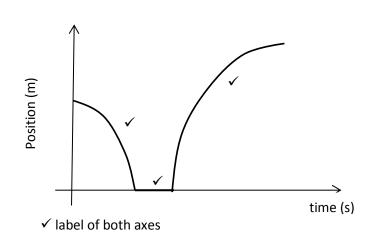
2.5.2 From: $T_y = T \sin \theta$. The angle (θ) increases \checkmark , so the vertical component of the tensional force (T_y) will increase \checkmark . **OR** From: $F_N + T_y = F_g$ θ increases/ T_y increases \checkmark

The parcel will not push as hard into the table surface \checkmark so the normal force will decrease in magnitude. (2)

[18]

(1)

Page | 3


QUESTION 3

Work Energy Theorem

OR

$$W_{nc} = \Delta E_p + \Delta E_k$$

3.4

(4)

(3)

[14]

QUESTION 4

4.1 The total linear momentum ✓ of an isolated (closed) system remains constant ✓ (is conserved). OR
 In an isolated system ✓ The total linear momentum before collision equals the total linear moment after collision. ✓ (2)

4.2 Linear momentum conservation:

Take "towards Orion" as the positive direction:

$$\sum \vec{p}_{i} = \sum \vec{p}_{f}$$

$$M\vec{v}_{i} = m_{A}\vec{v}_{A,f} + m_{B}\vec{v}_{B,f}$$

$$(3,6 \times 10^{19})(5) \checkmark = m_{A}(8) \checkmark + (3,6 \times 10^{19} - mA) \checkmark (-2) \checkmark$$

$$10 m_{A} = 1.8 \times 10^{20} + 7.2 \times 10^{19}$$

$$m_{A} = 2.52 \times 10^{19} \text{ kg}$$

Take "towards Orion" as the positive direction: $\sum \vec{p}_{i} = \sum \vec{p}_{f}$ $M\vec{v}_{i} = m_{A}\vec{v}_{A,f} + m_{B}\vec{v}_{B,f}$ $(3,6 \times 10^{19})(5) \checkmark = m_{A}(8) + m_{B}(-2) \checkmark$ $1,8 \times 10^{20} + 2m_{B} = 8m_{A}$ $m_{A} = 2,25 \times 10^{19} + 0,25m_{B}$ (A)

Mass conservation:

 $m_{\rm A} + m_{\rm B} = M$ $m_{\rm A} + m_{\rm B} = 3.6 \times 10^{19} \, \text{kg} \checkmark \text{ (B)}$

sub (A) into (B): $2,25 \times 10^{19} + 0,25m_{\rm B} + m_{\rm B} = 3,6 \times 10^{19} \text{ kg}$ $1,25m_{\rm B} = 1,35 \times 10^{19} \text{ kg}$ $m_{\rm B} = 1,08 \times 10^{19} \text{ kg}$ sub $m_{\rm B}$ into (B): $m_{\rm A} + 1,08 \times 10^{19} = 3,60 \times 10^{19} \checkmark$ $m_{\rm A} = 2,52 \times 10^{19} \text{ kg}$ $\sum_{\substack{n \neq i \\ M \vec{v}_{i} = m_{A} \vec{v}_{A,f} + m_{B} \vec{v}_{B,f}}} \int (3,6 \times 10^{19})(5) \checkmark = m_{A}(8) + m_{B}(-2) \checkmark (1,8 \times 10^{20} + 2m_{B} = 8m_{A}) + m_{B} = 4 m_{A} - 9 \times 10^{19} \quad (A)$ Mass conservation: $m_{A} + m_{B} = M + m_{A} + m_{B} = 3,6 \times 10^{19} \text{ kg } \checkmark \quad (B)$

Take "towards Orion" as the positive

direction:

sub (A) into (B):

$$m_A + 4 m_A - 9 \times 10^{19} = 3.6 \times 10^{19}$$

 $5 m_A = 3.6 \times 10^{19} + 9 \times 10^{19} \checkmark$
 $m_A = 2.52 \times 10^{19} \text{ kg}$

(5)

4.3

Take "towards Orion" as the positive direction: $\vec{F}_{net}\Delta t = \Delta \vec{p} \quad \checkmark$ $= m(\vec{v}_f - \vec{v}_i)$ $= (2.52 \times 10^{19})(8 - 5) \checkmark$ $= 7.56 \times 10^{19} \text{ N} \cdot \text{s /kg} \cdot \text{m} \cdot \text{s}^{-1} \text{ towards Orion } \checkmark \text{ (magnitude + direction)}$

(3)

 $F_{g} = \frac{Gm_{A}m_{B}}{r^{2}} \checkmark$ $= \frac{(6,67 \times 10^{-11})(2,52 \times 10^{19})(1,08 \times 10^{19}) \checkmark}{(150 \times 10^{3})^{2} \checkmark}$ $= 8,07 \times 10^{17} \text{ N} \checkmark$

(4) [**15**]

QUESTION 5

- 5.1 The <u>net (total) work done on an object</u> ✓ is <u>equal to</u> the <u>change in the object's kinetic energy</u>. ✓ OR The <u>work done on an object by a net (resultant) force</u> ✓ is <u>equal to</u> the <u>change in the object's kinetic energy</u>. ✓
- 5.2 $W_{g} = F_{g}\Delta y \cos\theta \checkmark$ $= mg\Delta y \cos\theta$ $= (75)(9,8)(2,4 1,6)\checkmark \cos0^{\circ}\checkmark$ $= 588 J\checkmark$

OR

work due to a conservative forces is equal to negative change in potential energy associated with that conservative force:

$$W_{\rm c} = -\Delta E_{\rm p}$$

$$W_{\rm g} = -mg(h_{\rm f} - h_{\rm i}) \checkmark$$

$$= \underbrace{-(75)(9,8)}_{= 588 \, \text{J}} \checkmark (1,6 - 2,4) \checkmark$$

5.3

$$W_{\text{net}} = \Delta E_{\text{k}}$$

$$W_{f} + W_{g} \checkmark = \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$

$$W_{f} + 588 \checkmark = \frac{1}{2} (75) (3,75^{2} \checkmark - 0^{2} \checkmark)$$

$$W_{f} = -60,66 \text{ J} \checkmark$$

OR

$$W_{\rm nc} = \Delta E_{\rm p} + \Delta E_{\rm k}$$

$$W_f = mg(h_{\rm f} - h_{\rm i}) + \frac{1}{2}m(v_{\rm f}^2 - v_{\rm I}^2)$$

$$= (75)(9,8)\checkmark((1,6-2,4))\checkmark + \frac{1}{2}(75)((3,75^2\checkmark - 0^2))\checkmark$$

$$= -60,66 \, \text{J} \checkmark$$

5.4.1 REMAINS THE SAME ✓

5.4.2 The gravitational force is conservative (non-contact) force ✓, so the work done by the gravitational force will not depend on the path taken. ✓ The starting and ending points are the same. Therefore the work done by the gravitational force will remain the same.

(2) [**15]**

(2)

(4)

(1)

(6)

QUESTION 6

The apparent change in frequency in sound heard due to the relative motion between listener and/or 6.1.1 source.√√ (2)

6.1.2	$f_L = \left(\frac{v \pm v_L}{v \pm v_S}\right) f_S$ $\therefore 0.93 \text{ x } f_S \checkmark = \left(\frac{335 - 0}{335 + v_S}\right) f_S$		
	$\therefore 0,93(335 + v_s) = 335$		
	$\therefore 0,93v_{\text{S}} = 335 - 0,93 \times 335$		
	$\therefore v_{\rm S} = \frac{0.07 \text{ x } 335}{0.93} = 25,22 \text{ m} \cdot \text{s}^{-1}$	\checkmark	(4)
6.2.1	Absorption (line spectrum) ✓		(1)

6.2.2 Red-shift ✓ (1)

Away from 🗸 6.2.3 (1) [9]

(3) [18]

QUESTION 7

The force of attraction or repulsion between two charges is directly proportional to the product of 7.1 their charges \checkmark and inversely proportional to the square of the distance between them/ their centres. \checkmark (2)

7.6

$$=\frac{\sqrt[3]{220}}{2 \times 10^{-6}} \checkmark$$

= 1,61 × 10⁷ N · C⁻¹ ✓

OUES	TION 8	gelo
8 .1	emf ✓	(1)
8.2	Load voltage OR external voltage OR terminal voltage 🖌	(1)
8.3	$V = IR \qquad \checkmark$ $\therefore r = \frac{V_{int}}{I} = \frac{0.9}{4.5} \qquad \checkmark$ $= 0.2 \Omega \qquad \checkmark$	(3)
8.4	3 Ω \checkmark same V \checkmark over each resistor and <u>Lis inversely proportional to R</u> \checkmark	(3)
8.5	$\frac{1}{R_{\rm P}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \checkmark$	
	$= \frac{1}{4} + \frac{1}{3} + \frac{1}{4} \checkmark = \frac{3+4+3}{12} = \frac{10}{12}$	
	$\therefore R_{\rm P} = \frac{12}{10} = 1,2 \ \Omega \checkmark$	
	$\therefore R_{\rm P} = \frac{12}{10} = 1,2 \ \Omega \checkmark$ $R_{\rm TOTAL} = \frac{\varepsilon}{1} = \frac{18}{4,5} \checkmark = 4 \ \Omega \checkmark \qquad \qquad$	
	$R_{TOTAL} = R + R_{P} + r$ $\therefore 4 = R + 1,2 + 0,2 \checkmark$ $R = 2,6 \Omega \checkmark$ $R = V/I = 11,7/4,5 = 2,6 \Omega \checkmark$)
	$\therefore R = 2,6 \Omega \qquad \checkmark \qquad \qquad$	(7)
8.6	Temperature ✓ (1)	
8.7	R _P increases when S₂ is opened so R _{cir} increases ✓ so I _{cir} / current strength through ammeter decreases ✓	

so I_{cir} / current strength through ammeter decreases so V_{int} (= Ir) decreases (r constant) so V_{ext} increases ($V_{ext} = \varepsilon - V_{int}$)

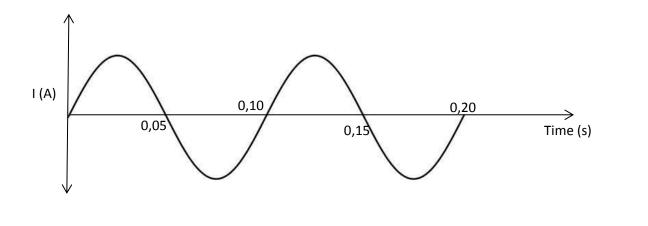
(4) [20]

(1)

(2)

(2)

QUESTION 9


9.1 0,10 s 🗸

9.4

9.2 $V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}}$ $= \frac{84,8}{\sqrt{2}}$ = 60 V

9.3.1
$$P_{\text{avg}} = V_{\text{rms}}^{2}$$
$$\therefore 40 = \frac{100^{2}}{R}$$
$$\therefore R = 250 \,\Omega$$
(3)

9.3.2 TOO DIM \checkmark V_{rms} for bulb = 100 V BUT V_{rms} of generator - 60 V. \checkmark

(2) **[10]**

(1)

(2)

(3)

QUESTION 10

10.1 Planck's constant

10.2 *Threshold frequency* (f_0) is the minimum frequency of light \checkmark needed to emit (eject) electrons \checkmark from the surface of a certain metal / material.

10.3

$$W_0 = hf_0 \checkmark$$

$$= (6,63 \times 10^{-34})(1,4 \times 10^{15}) \checkmark$$

$$= 9,282 \times 10^{-19} \text{ J}$$

10.4.1The greater brightness would:
- increase the number ✓ of photoelectrons

√

10.4.2 - but would have no <u>effect on their kinetic energies</u> / <u>Remain the same</u>√

(2)

 $E_{k,\max,E} = \frac{1}{2} m_e v_{\max,E}^2 \checkmark$ $2,4 \times 10^{-18} \checkmark = \frac{1}{2} (9,11 \times 10^{-31}) \checkmark v_{\max,E}^2$ $v_{\max,E} = 2,3 \times 10^6 \text{ m} \cdot \text{s}^{-1} \checkmark$ OR

$$E = W_{o} + E_{k}$$

$$E_{k} = E - W_{o}$$

$$\frac{1}{2} \text{ mv}^{2} = \text{ hf } - W_{o}$$

$$\frac{1}{2} (9,11 \times 10^{-31}) \text{ v}^{2} \checkmark = (6,63 \times 10^{-34})(5 \times 10^{15}) - (9,282 \times 10^{-19}) \checkmark$$

$$v = 2,29 \times 10^{6} \text{ m} \cdot \text{s}^{-1} \checkmark$$

OR

Learners can calc the gradient of the graph which = $6,67 \times 10^{-34}$ and then use above method.

(4) **[12]**