

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES P1

MARKING GUIDELINE

PREPARATORY EXAMINATION

SEPTEMBER 2019

GRADE 12

MARKS: 150

N.B. This marking guideline consists of 12 pages including this page.

1.1 $A\checkmark\checkmark$ (2)

1.2 D✓✓ (2)

1.3 D√√ (2)

1.4 B√√ (2)

1.5 B√√ (2)

1.6 C√√ (2)

1.7 C✓✓ (2)

1.8 B√√ (2)

1.9 A√√ (2)

1.10 D√√ (2) **[20]**

QUESTION 2

When one body exerts a force on a second body, the second body exerts a force of equal magnitude in the opposite direction on the first body. ✓√

OR

If <u>body A exerts a force on body B</u>, then <u>body B exerts an equal and</u> opposite force on body A

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

2.2

Accepted Labels:	
Т	F _T / Tension / F _{cord on m1}
W	weight / F _g / Gravitational force / F _{earth on mA} /mg/force of Earth on block.
	/ing/force of Earth off block.

Criteria

- Mark awarded for label <u>and</u> arrow.
- Do not penalize for length of arrow since drawing is not to scale
- Any other additional force(s): Max.: 1/2
- If force(s) do not make contact with dot: Max: ½

(2)

2.3 TAKE CLOCKWISE AS POSITIVE

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

 $0.5 = 0.\Delta t + \frac{1}{2} a (1.43)^2 \checkmark$
 $a = 0.49 \text{ m·s}^{-2} \checkmark$

Consider m_A:

F_{net} = ma Any one
$$\checkmark$$

T - m_Ag = m_Aa $]$
T - $(1,9)g = (1,9)(0,49)$ \checkmark
T - $(1,9)g = 0,931$(1)

Consider m_B:

$$F_{net} = ma$$

 $m_B g - T = m_B a$
 $(2,1)g - T = (2,1)(0,49) \checkmark$
 $(2,1)g - T = 1,029....(2)$

Solving (1) and (2):

$$(2,1)g - (1,9)g = 1,96$$
 (simplification)
 $(0, 2)g = 1,96$
 $g = 9,80 \text{ m} \cdot \text{s}^{-2} \checkmark$

(7) **[11]**

3.1
$$10 \text{ m} \checkmark$$
 (1)

3.2
$$1,2 \text{ (s)} \checkmark$$
 (1)

- 3.3 An object upon which the only force acting is the force of gravity.✓✓ (2)
- 3.4 Take downward motion as NEGATIVE. (Other option: take downwards as positive))

$$V_f = V_i + a \Delta t \checkmark$$

$$0 = V_i + (-9.8)(0.6) \checkmark$$

$$V_i = 5.88 \text{ m·s}^{-1}, \text{ upwards} \checkmark$$
(3)

3.5 Positive marking from QUESTION 3.4

OPTION 1

OPTION 2

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= $(5.88) (0.6) + \frac{1}{2} (-9.8) (0.6)^2 \checkmark$
= 1.764 m
Maximum height = $\frac{10}{1.76} + \frac{1}{1.76} = \frac{10}{1.76} = \frac{10}{1.76} + \frac{1}{1.76} = \frac{10}{1.76} + \frac{1}{1.76} = \frac{10}{1.76} + \frac{1}{1.76} = \frac{10}{1.76} = \frac{$

$$\Delta U + \Delta K = 0$$

 $\frac{1}{2} \text{ mv}_i^2 + \text{mgh}_i = \frac{1}{2} \text{ mv}_f^2 + \text{mgh}_f \checkmark$
 $\frac{1}{2} \text{m}(5,88)^2 + \text{m}(9,8)(10)}{\text{h} = 11,76 \text{ m}} \checkmark$

OPTION 3

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $\underline{(0)^2 = (5.88)^2 + 2(-9.8)} \Delta y \checkmark$
 $\Delta y = 1.764 \text{ m} \checkmark$

Maximum height =
$$10 + 1,764$$

= $11,76 \text{ m}\checkmark$

OPTION 4

$$\Delta y = \left(\frac{V_f + V_i}{2}\right) \Delta t \checkmark$$
= \(\frac{1}{2}\) (0+5,88) (0,6) \(\frac{1}{2}\)
= 1,764 m \(\frac{1}{2}\)

Maximum height = 10 + 1,764
= 11,76 m \(\frac{1}{2}\)

3.6 Positive marking from QUESTION 3.4 and 3.5

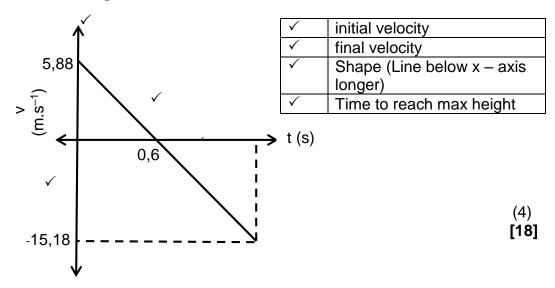
From maximum height downwards

$$V_f^2 = V_i^2 + 2a\Delta y \checkmark$$

= $(0)^2 + 2(-9.8)(-11.76)$
 $V_f = 15.18 \text{ m.s}^{-1}$

OR

From the balcony upwards


$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

= $(5.88)^2 + 2 (-9.8) (-10) \checkmark$
 $v_f = 15.18 \text{ m} \cdot \text{s}^{-1} \checkmark$

(3)

(4)

Copyright Reserved

3.7 Positive marking from QUESTION 3.4 and 3.6

QUESTION 4

4.1 The total linear momentum in a closed/isolated system remains constant / is conserved. ✓ ✓ (2)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

4.2 Right as positive

$$\begin{split} \Sigma p_i &= \Sigma p_f \checkmark \\ (mv_i)_1 + (mv_i)_2 &= (mv_f)_1 + (mv_f)_2 \\ (\underline{5500})v + (\underline{2000})(\underline{-30}) \checkmark &= (\underline{5500})(\underline{6}) + (\underline{2000})(\underline{10}) \checkmark \\ v &= 20.55 \text{ m} \cdot \text{s}^{-1} \checkmark \end{split}$$

Left as positive

$$\begin{split} \Sigma p_i &= \Sigma p_f \checkmark \\ (mv_i)_1 + (mv_i)_2 &= (mv_f)_1 + (mv_f)_2 \\ (5500)v + (2000)(30) \checkmark &= (5500)(-6) + (2000)(-10) \checkmark \\ v_i &= -20,5455 \text{ m} \cdot \text{s}^{-1} \\ \text{magnitude of velocity} &= 20,55 \text{ m} \cdot \text{s}^{-1} \checkmark \end{split} \tag{4}$$

4.3 $F_{\text{net}} \Delta t = m v_f - m v_i \checkmark$

$$F_{\text{net}} (0,2) \checkmark = (2000)(10) - (2000)(-30) \checkmark$$

 $F_{\text{net}} = 400\ 000\ \text{N}$

 $F_{net} = 400\ 000\ N$ to the left \checkmark

OR

$$\begin{aligned} & F_{\text{net}} \; \Delta t = m v_f - m v_i \; \checkmark \\ & F_{\text{net}} \; (0,2) \; \checkmark = \underbrace{(5500)(6) - (5500)(20,5455)}_{\text{Fnet}} \; \checkmark \\ & F_{\text{net}} = -400 \; 001,25 \; \text{N} \\ & F_{\text{net}} = \underbrace{400 \; 001,25 \; \text{N to the left}}_{\text{I}} \; \checkmark \end{aligned} \tag{4}$$

(4)

QUESTION 5

5.1 The total mechanical energy in an isolated (closed) system ✓ remains constant (is conserved). ✓ (2)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

5.2

OPTION 1

Emech at P = Emech at Q
$$\checkmark$$

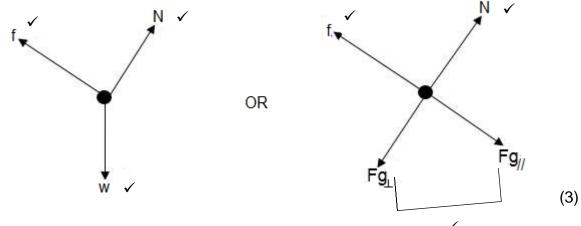
(mgh + ½ mv²)P = (mgh + ½ mv²)Q
 $4[(9,8)(3) + ½(0)²] \checkmark = 4[(9,8)(1,25) + ½ v²] \checkmark$
 $v = 5,86 \text{ m·s}^{-1} \checkmark$

OPTION 2

E_{mech} at P = E_{mech} at Q
$$\checkmark$$

(mgh + $\frac{1}{2}$ mv²)P = (mgh + $\frac{1}{2}$ mv²)Q
 $4[(9,8)(1,75) + \frac{1}{2}(0)^{2}] \checkmark = 4[(9,8)(0) + \frac{1}{2}v^{2}] \checkmark$
 $v = 5,86 \text{ m} \cdot \text{s}^{-1} \checkmark$ (4)

5.3.1 The <u>net/total work done</u> on an object <u>is equal to</u> the <u>change in the</u> <u>object's kinetic energy</u>. $\checkmark\checkmark$


OR

The work done on an object by a resultant/net force is equal to the change in the object's kinetic energy. ✓✓ (2)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark. **If the word "work" is omitted then 0 marks.**

5.3.2

5.3.3 W_{net} =
$$\Delta$$
 E_K \checkmark

$$W_{net} = 0$$

$$W_f + W_q = 0$$

$$f\Delta x \cos\Theta + mg\Delta x \cos\Theta = 0$$

$$(15)(X)\cos 180^{\circ} \checkmark + (4)(9,8)(1,25)\cos 0^{\circ} \checkmark = 0 \checkmark$$

$$X = 3,267 \text{ m} \checkmark$$
(5)

(1) **[17]**

QUESTION 6

6.1 Doppler Effect. ✓

The <u>change in frequency (or pitch)</u>, of the sound detected by a listener because <u>the sound source and the listener have different velocities</u> relative to the medium of sound propagation.

OR

An (apparent) change in observed/detected frequency (pitch), as a result of the relative motion between a source and an observer \checkmark (listener). (3)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

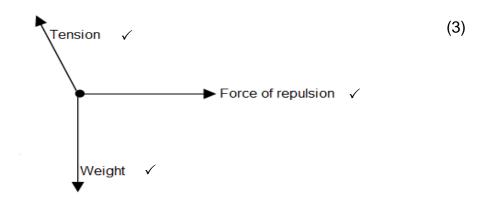
6.2
$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark / f_{L} = \frac{v}{v - v_{s}} f_{s}$$
$$\frac{110}{100} f_{s} \checkmark = (\frac{340}{340 - v_{s}}) \checkmark f_{s} \checkmark$$
$$v_{s} = 30,91 \text{ m·s}^{-1} \checkmark$$

(5) (1)

6.3 Increase ✓

[9]

Copyright Reserved


7.1 The magnitude of the electrostatic force exerted by one point charge (Q₁) on another point charge (Q2) is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them. ✓✓

(2)

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.

7.2

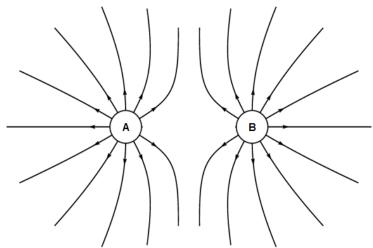
7.3

$$F_g = mg\checkmark$$
= (0,004)(9,8) \checkmark
= 0,04 N

$$F_{repulsion} = F_g \times tan 5^{\circ}$$
= 0,04 × tan 5° \checkmark
= 3,43 × 10⁻³ N \checkmark

(4)

7.4 Positive Marking from 7.3


$$F = \frac{kQ_1 Q_2}{r^2} \checkmark$$

$$3,43 \times 10^{-3} \stackrel{\checkmark}{=} \frac{(9 \times 10^9)(1 \times 10^{-6})(9 \times 10^{-6})}{r^2} \checkmark$$

$$r = 4,86 \text{ m} \checkmark$$
(4)

(3)

7.5

Criteria

- Shape (pattern)√
- Direction of field lines ✓
- Field lines not touching each other√
- If field lines are not touching the spheres: Max 2/3

7.6

$$Q_{\text{new}} = \frac{Q_1 + Q_2}{2}$$

$$= \frac{(1 \times 10^{-6}) + (9 \times 10^{-6})}{2} \checkmark$$

$$= +5 \times 10^{-6} \text{ C} \checkmark$$
(2)

7.7 A to B
$$\checkmark$$
 (1)

7.8 Positive marking from 7.6

$$n = \frac{Q_{\text{new}} - Q_1}{e}$$

$$= \frac{(5 \times 10^{-6}) - (1 \times 10^{-6})}{1,6 \times 10^{-19}} \checkmark$$

$$= 2,5 \times 10^{13} \text{ (electrons)} \checkmark$$
[21]

8.1

$$P = \frac{V^2}{R} \checkmark$$

$$13, 5 = \frac{18^2}{R} \checkmark$$

$$R = 24 \Omega \checkmark$$

OPTION 2

$$P = VI \checkmark$$

13,5 = (18)I \checkmark
I = 0,75 A

$$V = IR$$

 $18 = (0,75)R$
 $R = 24\Omega \checkmark$

(3)

8.2 Positive marking from 8.1

OPTION 1

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark$$

$$\frac{1}{R_p} = \frac{1}{12} + \frac{1}{24} \checkmark$$

$$R_p = 8\Omega$$

$$V = IR \checkmark$$

$$18 = I(8) \checkmark$$

$$I = 2,25A \checkmark$$

OPTION 2

$$V = IR\sqrt{18} = I(24) \sqrt{18} = 0.75A$$

$$V_p = I_{12}R$$
 $18 = I_{12}(12) \checkmark$
 $I_{12} = 1,5 A$

$$I_{tot} = 0.75 + \checkmark 1.5$$

= 2.25 A \sqrt{

(5)

- 8.3 Internal resistance is the opposition to the flow of charge within a cell/battery. $\checkmark\checkmark$
- (2)

8.4 Positive marking from 8.2

$$V = IR \checkmark$$

= (2,25)(10) \checkmark
= 22,5 $V \checkmark$ (3)

8.5

OPTION 1

$$\varepsilon = I(R + r) \checkmark$$

 $45,9 \checkmark = 2,25 \checkmark (10+8 \checkmark + r)$
 $r = 2,40 \ \Omega \checkmark$

OPTION 2

$$V_{\text{ext}} = V_p + V_{10}$$

= 18 + 22,5 \checkmark
= 40.5 V

$$V_{lost} = 45.9 - 40.5$$

= 5.40 V

$$V_{lost} = Ir \checkmark$$

5,4 = (2,25)r \checkmark
r = 2,40 $\Omega \checkmark$

8.6 Increase ✓

(1) [**19**]

(5)

Copyright Reserved

Please Turn Over

(3)

QUESTION 9

9.1 Electromagnetic induction ✓ (1)

9.2 The *rms* value of the AC is the direct current which dissipates the same amount of energy as AC. ✓✓ (2)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

9.3
$$V_1 \checkmark$$
 (1)

9.4
$$V_1 = \frac{V_2}{\sqrt{2}} \text{ OR } V_2 = \sqrt{2} V_1 \checkmark$$
 (1)

9.5
$$V_1 = \frac{V_2}{\sqrt{2}}$$
 or $V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$
 $220 = \frac{V_2}{\sqrt{2}} \checkmark$
 $V_2 = 311,13 \ V \checkmark$ (3)

9.6

OPTION 1
 OPTION 2

$$P_{ave} = \frac{1}{2} V_{max} \cdot I_{max} \checkmark$$
 $P_{ave} = \frac{1}{\sqrt{2}} V_{max} \cdot \frac{I_{max}}{\sqrt{2}} \checkmark$
 $1200 = \frac{1}{2} (311,13) \cdot I_{max} \checkmark$
 $(\sqrt{2})(1200) = (220) \cdot I_{max} \checkmark$
 $I_{max} = 7,71 \text{ A} \checkmark$
 $I_{max} = 7,71 \text{ A} \checkmark$

OPTION 3 $P_{ave} = V_{rms} \cdot I_{rms}$ $R = \frac{V_{rms}}{I_{rms}} = \frac{220}{5,455} \checkmark = 40,33 Ω$ $1200 = 220 \cdot I_{rms} \checkmark$ $I_{max} = \frac{V_{max}}{R} \checkmark = \frac{311,13}{40,33} = 7,72 Α \checkmark$

But
$$I_{max} = \sqrt{2} \cdot I_{rms} \checkmark$$

= $(\sqrt{2})(5,455)$
= 7.71 A \checkmark

 $I_{rms} = 5.46 A$

OPTION 5
$$P_{\text{ave}} = \frac{(V_{\text{rms}})^2}{R}$$

$$R = \frac{(220)^2}{1200} \checkmark = 40,33 \,\Omega$$

$$I_{\text{max}} = \frac{V_{\text{max}}}{R} \checkmark = \frac{311,13}{40,33} = 7,72 \,\text{A} \checkmark$$
(3)

- 9.7 ANYONE
 - Easier to generate and transmit from place to place.√
 - Lesser energy loss in transmission.√
 - Voltage can be easily changed by stepping it up or down.√ (1)
 [12]

10.2 Threshold frequency ✓ (1)

10.3 The minimum energy that an electron in the metal needs to be emitted from the metal surface. $\checkmark\checkmark$ (2)

NOTE

If any of the underlined key words in the **correct context** is omitted deduct 1 mark.

10.4 $W_0 = hf_0 \checkmark$ = $(6,63 \times 10^{-34}) (5 \times 10^{14}) \checkmark$ = $3,32 \times 10^{-19} \text{ J} \checkmark$ (3)

10.5 Positive marking from 10.4

$$hf = W_0 + \frac{1}{2}mv^2 \checkmark$$

(6,63 x 10⁻³⁴) (f₁) = 3,32 x 10⁻¹⁹ + 11 x 10⁻¹⁹
f₁ = 2,15 x 10¹⁵ Hz
$$\checkmark$$

10.6 Remain the same ✓ (1)

[13]

(5)

TOTAL MARKS: 150