
Hilton College				August 2016			Physical Science	:e P2			
MEMO:											
Q1.1	D	1.2	В	1.3	С	1.4	А	1.5	С		
1.6	С	1.7	А	1.8	В	1.9	D	1.10	А		[20]
Q2.1.1	Cl₂ ✓	2.1.2	NH₃✔	2.1.3	P ₂ O ₅ ✓	2.1.4	Fe 🗸	2.1.5	HBr ✔ 2.1.6	MgI₂✔	(6)
2.2.1	gas V	2.2.2	induce	d dipole	/induce	d dipole	/London	/Dispers	sion V		(2)
2.2.3	increa	se, bond	ls get str	onger V							(1)
2.2.4	Noble	gases ar	nd halog	ens both	have- L	ondon/[Dispersio	on/Ind. [Dipole/Ind. Dipo	le v	
	Haloge	ens have	higher r	nelting a	and boili	ng point	s; since	the mol	ecules increase	in size v	
	the ha	alogens l	become	liquids a	nd solid	s at roor	n tempe	erature.	v		(3)
											[12]
Q3.1	Activa	tion ene	rgy is de	fined as	the min	imum er	nergy red	quired to	o start a chemico	al reaction. √√	(2)
3.2	2 SO₃	→ 2 SC	O ₂ + O ₂		√√ -1	FOR EA	CH MIST	AKE			(2)
3.3	Molecules must be correctly aligned $m{v}/$ molecules must contain the minimum amount of activation E. $m{v}$						(2)				
3.4	Reaction rate is the change in concentration per unit time v of either a reactant or product. v						(2)				
3.5	Pressure /temperature/a catalyst any 2 vv						(2)				
3.6	Experiment 2 \mathbf{v} greater surface area means more collisions between reacting particles. \mathbf{v}						(2)				
3.7	Crush it, etc. V						(1)				
3.8	Volume of acid/ temperature/concentration of acid any 2 VV						(2)				
3.9	Volume of gas released v					(1)					
3.10	Same	volume	of tablet	in the s	ame acid	l, which	means p	products	volume are the	same. 🗤	(2)
	Law of	fconser	ation of	mass							
3.11			1								
	Surfac	e area		Expt	. 2		Expt. 1		1 mark for lab	els v	
	1 mark for different gradient lines v										
							→				(2)
	Volume of gas released										

3.12 Experiment 2 was faster.

(1)

[21]

Q4.1.1 "When an external stress (change in pressure, temperature or concentration) \mathbf{V} is applied to a system in chemical equilibrium, \mathbf{V} the equilibrium point will change in such a way as to counteract the stress" \mathbf{V} (3)

4.1.2	Dynamic means the reverse and forward reaction are taking place even though changes are not	visible, v and
	equilibrium means that the observable properties like concentration remain constant. $oldsymbol{v}$	(2)
4.2.1	Decreases	(1)
7.2.1		(-)
4.2.2	Decreases V	(1)
4.3	Stress: Increase in pressure	

Le Chatelier says and increase in pressure favours the reaction which has less moles of gas in order to

reduce the pressure, ${\bf v}$ therefore the forward reaction is favoured to reduce the pressure. ${\bf v}$

As a result the concentration of CO will be reduced. \mathbf{v}

4.4 Increase in volume **v** As a result of an increase in volume there is a decrease in concentration as volume is inversely proportional to volume. **v** Le Chatelier states that it opposes the stress therefore in this case all three the concentrations of the gases will decrease in concentration. **v** Also when volume increase pressure decreases and as pressure decreases so Le Chatelier states that the side with less moles of gas will decrease accordingly. **v**

(4)

(3)

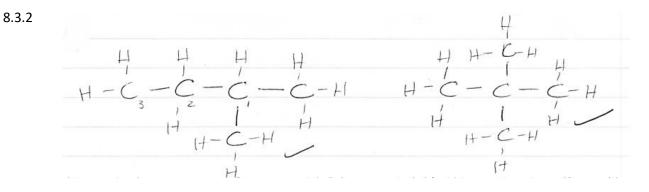
- 4.5.1 Exothermic**v** (1)
- 4.5.2 Stress is an increase in temperature. V Le Chatelier states that when temperature is increased the reaction which causes a decrease in temperature (endothermic) will be favoured. V At Disturbance C we see the concentration of Cl₂ and CO increasing and COCl₂ decreases, hence the reverse reaction was favoured, V thus making the reverses reaction endothermic. V (4)

4.6
$$\operatorname{Kc} = [\operatorname{COCl}_2]$$
 = $[0.8]$ = 0.67 \vee
[CO][Cl_2] \vee [1.7][0.7] \vee (3)

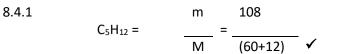
4.7	Kc value is low therefore the yield of $COCl_2$ will be $low \sqrt{1}/OR$ Low yield as concentration of products is lower than the concentration of the reactants thus reaction is incomplete. $\sqrt{1}$ (2)						
4.8	Temperature change	(1)					
		[25]					
5.1.	Protolytic reactions v	(1)					
5.2	Diprotic- H ₂ SO4,H ₂ SO ₃ ,H ₂ CO ₃ v Triprotic- H ₃ PO ₄ v	(2)					
5.3	Sodium carbonate is a strong base therefore the cations of the strong base do not undergo hydrolysis. $oldsymbol{v}$						
	However, the anion does as shown in the second equation. \mathbf{v} Water undergoes hydrolysis and form the ions shown in the first equation. \mathbf{v} Therefore there is an excess of OH ⁻ ions, hence a basic solution. \mathbf{v} (4)						
	OR						
	CO_3^{2-} is the conjugate base of a weak acid $HCO_3^{-}(H_2CO_3) \mathbf{VV}$. It is able to remove H^+ from a water molecu therefore creating an excess of OH^- ions. \mathbf{V} The solution is basic. \mathbf{V}	le (4)					
5.4.1	$[NH_3] = 0,1mol.dm^{-3}$ and $[OH^-] = 0,001mol.dm^{-3} V$ therefore NH_3 forms ions to a limited extent V or						
	NH_4OH/NH_3 only partially ionizes hence weak base. \vee or only partially ionizes.	(3)					
5.4.2	$NH_4OH(aq) + HCI(aq) \rightarrow NH_4CI(aq) + H_2O(I)$						
	v = 20cm ³ v =22cm ³						
	HCI: $n = cV V = 0,062 \times 22 \times 10^{-3} V$						
	= 1,364 x 10⁻³ mol. √						
	Ratio is 1:1 therefore $1,364 \times 10^{-3}$ mol therefore $c = n/V = 1,364 \times 10^{-3}/20 \times 10^{-3}$ V						
	C = 0.0682 mol.dm ⁻³ √	(5)					
5.5.1	Neutralization is the point where an acid and base have reacted so neither is in excess. $oldsymbol{v}$	(1)					
5.5.2	Acid $n = CV$ = 0.5 x 0.024 v = 0.012 mol v						
	Mole ratio 1:2 therefore 0.012: 0.024 mol of base v						
	C = n/V = $0.024/0.02$ V = 1.2 mol.dm^{-3} V	(5)					
5.5.3	$m = n \times M v$ = 0.024 x 40v = 0.96 g v	(3)					
5.6.1	CONC acid : contains a large number of moles of acid solute \checkmark per volume of solution \checkmark	(2)					
5.6.2	A \checkmark : pH α (I / [H ₃ O ⁺] \checkmark therefore the weak acid which ionises to a lesser extent \checkmark results in higher pH	I (3)					

5.6.3 C and B \checkmark : strong acids undergoes almost complete ionisation so [product] is high \checkmark (equilibrium lies to the right), resulting in larger K_c value (2)

5.6.4	$C \checkmark$: conductivity α [ion] \checkmark	(2)
5.7	sulfuric acid \checkmark and ammonium(ammonia/hydroxide/oxide/ carbonate/ chloride/nitrate) \checkmark	(2)
	[35]	
6.1	298K √ and conc. of 1mol.dm ⁻³ . √	(2)
6.2	There is a build up of cations and anions within the cells v and the salt bridge allows the ions to move fice cell to another to maintain cell neutrality. v	om one (2)
6.3	Mg to Ag V	(1)
6.4	Magnesium electrode 🛛 🗸	(1)
6.5	Mg(s) / Mg ²⁺ (aq) v // vAg ⁺ (aq) / Ag(s) v	(3)
6.6	$Mg(s) + 2 Ag^{+}(aq) \rightarrow Mg^{2+}(aq) + 2Ag(s) \sqrt{\sqrt{V}}$ -1 for no phase indicators -1 for any other mistake	(3)
6.7	Increase v , if you increase the concentration of Ag ⁺ ions, it will favour the forward reaction which will i	ncrease
	the positive charge at the cathode, \mathbf{v} thus the emf of the cell will increase. \mathbf{v}	(3)
6.8	It will become zero. V	(1)
6.9.1	Ag: n = m/M = 2.7/108 v = 0.025mol. v	
	Mole ratio 2: 1 Ag:Mg therefore 0.025: 0.0125 V	
	Mg: $m = n \times M \ 0.0125 \times 24 \sqrt{4} = 0.3g \sqrt{4}$	
	therefore mass of Mg electrode is $12,15 - 0.3 = 11.85$ g. V	(6)
6.9.2	n = m/M = 2.7 / 108 = 0.025mol. V	
	Q = n x F = 0.025 x 96500C = 2412.5C √	
	I = Q/t = 2412.5/(30 x 60) v = 1.34 A v	(4)
		[26]
7.1	Anode v	(1)
7.2	2Br [−] (aq) → Br ₂ (l) + 2 e ⁻ v v	(2)
7.3	$2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^- \sqrt{V}$	(2)
7.4	Bromine forms therefore a brown discolouration at the electrode. $oldsymbol{v}$	
	[did not accept mass of electrode decreasing)	(1)
7.5	2 Br ⁻ (aq) + 2 H ₂ O (I) \rightarrow Br ₂ (I) + H ₂ (g) + 2OH ⁻ (aq) -1 for incorrect balancing	


(No carrying over from 7.2 or 7.3)

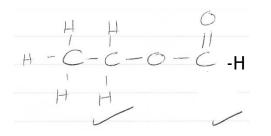
7.6.1	A = cathode \mathbf{v} B = anode \mathbf{v}	(2)		
7.6.2	Gold Cynide/sulphite/chloride/nitrate/sulphate anion/s possibilities \sqrt{V}	(2)		
7.6.3	Gold ions v	(1)		
7.6.4	Electrical to Chemical VV	(1)		
7.7.1	Chlorine/Hydrogen and sodium hydroxide \vvv	(3)		
7.7.2	Mercury cell - $oldsymbol{v}$ because of the health issues associated with mercury $oldsymbol{v}$			
	Diaphragm cell v – because of asbestosis health concerns with the asbestos membrane v			
		[23]		
8.1	A: elimination / dehydration 🗸			
	B: combustion / oxidation \checkmark			


- C: hydrohalogenation / addition 🗸
- D: esterification ✓

8.2 $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \checkmark \checkmark$ (2)

8.3.1 Compounds with the same molecular formula ✓ but different structural formula ✓

(6)


(4)

(2)

Mol ratio:
$$C_5H_{12}$$
: CO_2 m_{CO2} = n x M

$$1,5:7,5\checkmark$$
 = 330g \checkmark (5)

- 8.4.2 Carbon monoxide ✓
- 8.4.3

ethyl 🗸 methanoate 🗸	(4)
----------------------	-----

8.5.1	Butane ✓ and butene ✓		(2)
8.5.2	Butene – alkene 🗸	Butanol – alcohol 🗸	(2)

8.6.1 Butane (saturated) has more bonds ✓ than butene (unsaturated). This means more temporary dipoles ✓ set up in butene, and more v.d Waals ✓ forces, therefore more energy required to break them, therefore higher B.P ✓ (can also accept answers which talk about surface area of butane smaller than butane which leads to less vd waals forces, hence....) (4)

8.7.1 propane -1,2,3 – triol $\checkmark \checkmark$ CH₂OHCHOHCH₂OH \checkmark (3)

8.7.2 Tertiary alcohol 🗸

It is determined by the number of carbon atoms bonded to the carbon atom ν that is bonded to the hydroxyl group. \checkmark (3)

[38]

(1)

[200 marks]