

HILTON COLLEGE GRADE 12 TRIALS EXAMINATION AUGUST 2019

PHYSICAL SCIENCE: PAPER 2

MARK SCHEME

Question 1

- 1.1 A
- 1.2 D
- 1.3 C
- 1.4 B
- 1.5 D
- 1.6 A
- 1.7 A
- 1.8 B 1.9 B
- 1.10 A

[2 x 10 = 20]

Mark Scheme

(2)

Question 2

2.1	A measure of the tendency of an atom to attract a bonding pair
	of electrons.

2.2

$\Delta E N_{HBr} = 2,8 - 2,1$	∆EN _{PH3} = 2,1 – 2,1	
= 0,7√	= 0√	
Polar covalent bond√	Pure covalent bond√/	
	Non-polar covalent bond	۷۱

- Non-polar covalent bonu(4)2.3.1Oxygen or fluorine(1)2.3.2Hydrogen fluoride(1)2.3.3aluminium oxide or sodium chloride(1)2.3.4aluminium oxide or sodium chloride(1)2.3.5hydrogen fluoride(1)2.3.6neon(1)
- 2.3.7 copper
- 2.3.8 diamond
- 2.4 Hydrogen must be bonded to:

A small atom√

Highly electronegative✓

With at least 1 lone pair of electrons✓

(3)

(1)

(1)

2.5 Water has two lone pairs and 2 hydrogen atoms so it can **form 4 hydrogen bonds per molecule**. ✓

With only one lone pair, NH_3 will have two hydrogens not contributing to the hydrogen bonding so overall forms just 2 hydrogen bonds per molecule \checkmark

More energy required to overcome the hydrogen bonds in water ✓ and hence a higher boiling point (3)

[20]

Mark Scheme

(4)

QUESTION 3

3.1	the mass in grams of one mole of that substance $\checkmark \checkmark$	(2)
-----	---	-----

3.2
$$n = m/M$$

 $= 1/252\checkmark$
 $= 0.00397 \text{ mol}\checkmark$
 $N = nN_A$
 $= 0.00397 \times 6.02 \times 10^{23}$
 $= 2.39 \times 10^{21}\checkmark$
 $N_{Cr} = 2 \times 2.39 \times 10^{21} = 4.78 \times 10^{21} \text{ Cr atoms}\checkmark$ (4)

3.3.1 2NaOH (aq) + MgCl₂ (aq) → 2NaCl (aq) + Mg(OH)₂ (s) $n_{NaOH} = n_{MgCl2} = cV$ $= 1 \times 0.03 \sqrt{}$ $= 0.03 \text{ moles } \sqrt{}$

2 NaOH : 1 MgCl₂ $\sqrt{}$

Therefore 0.03 mole NaOH requires 0.015 moles MgCl₂ Thus NaOH = LR $\sqrt{}$

$$= 0.015 \checkmark x 58 \checkmark$$

=0.87 g \sqrt{ (3)}

3.4
$$n(AI) = 5/27$$

 $= 0.185 \text{ mol} \checkmark$ (0.185/2*3 = 0.278)
 $n(DMM) = 25/230.6\checkmark$
 $= 0,108 \text{ mol} \checkmark$ (0.108/3*2 = 0.072)
DMM is LR \checkmark
0,108 mol DMM produces 0.108/3*2 = 0.072 mol TMA \checkmark
 $m(TMA) = nM$
 $= 0.072 \times 72\checkmark$
 $= 5.18 \text{ g TMA}\checkmark$
% yield = actual / theoretical x 100
 $= 4,5/5,18 \times 100$
 $= 86.9\%\checkmark$ (8) [21]

Trials E	Examination 2019	Physical Science: Paper 2	Mark Scheme
Ques	tion 4		
4.1.1	exothermic	\checkmark	(1)
4.1.2	Reactants must col	ide with Ek greater than the E_A for the reaction	I √
	The reactants must	have the correct molecular orientation \checkmark	(2)
4.1.3		e of the reaction \checkmark by reducing the activation en nged by the end of the reaction.	nergy√ (2)
4.1.4	$\Delta H = Ep - Er$		
	= -86 - 25	\checkmark	
	= - 111 kJ.mol ⁻¹	✓✓(-1 no unit)	(3)
4.1.5	A high energy, unst	able, temporary transition state between the re	actants
	and the products√		(2)
4.1.6	68 – (-86) = 154 kJ.	mol ⁻¹ $\checkmark \checkmark$ (-1 for a negative answer)	(2)
4.2.1	Time: Stopwatch ✓		
	Gas: Syringe; or	Mass: electronic scale 🗸	(2)
4.2.2	t ₃ ✓		(1)
4.2.3	between t_1 and $t_2 \checkmark$		(1)
4.2.4			
	Volume (cm ³)	Exp. 1 Exp. 3 Time (s)	

Exp 2: Initial gradient higher than Exp 1√

Curve reaches same value as Exp 1, but <u>earlier</u> \checkmark

Exp 3: Initial gradient lower than Exp 1√

Curve reaches a smaller value for volume than Exp 1 (50% of the volume) \checkmark , initial rate is less (less steep gradient) \checkmark (4)

[20]

Mark Scheme

(1)

(2)

√

√

Question 5

- 5.1.1 When an external stress is applied to a system in dynamic chemical equilibrium, the equilibrium point will change in such a way as to counteract the stress ✓ ✓ (2)
- 5.1.2 Decrease√

Increasing pressure means reaction will favour producing fewer moles of gas \checkmark

This favours the reverse reaction thefore decreasing yield \checkmark (3)

5.1.3 increases rate ✓

High temperature favours the endothermic reaction which is the forwards reaction, hence increasing yield√ (2)

5.2.1 one (a system) in which mass is conserved inside the system but energy can enter or leave the system freely. \checkmark (2)

5.2.2 reversible reaction ✓

5.2.3.1 larger than ✓

Kc > 1√

5.2.3.2 Mark allocation

- Calculate n(CO)equilibrium i.e. divide m by 28 g-mol-1 OR substitute 6 mol • for equilibrium mole of CO. \checkmark
- √ Change in n(CO) = equilibrium n(CO) - initial n(CO)•
- USING ratio/GEBRUIK verhouding: CO2 : CO = 1 : 2 √ •
- √ Equilibrium $n(CO_2)$ = initial $n(CO_2)$ - change $n(CO_2)$. •
- √ Equilibrium mole of both CO₂ and CO divided by 2 dm³. •
- √ Correct Kc expression (formulae in square brackets). • √
- Substitution of concentrations into Kc expression. •
- Substitution of Kc value. •
- Final answer/ 4,28–4,29 (mol)

OPTION 1/OPSIE 1 $n = \frac{m}{M}$ $=\frac{168}{28}\checkmark$ = 6 mol 、 CO₂ CO Initial quantity (mol) 0 х Change (mol) ratio 🗸 6√ 3 Quantity at equilibrium (mol)/ x-3√ 6 Equilibrium concentration (mol·dm⁻³) X-3 3 Divide by 2 ✓ 2 $K_{c} = \frac{[CO]^{2}}{[CO_{2}]} \checkmark$ $14 \checkmark = \frac{(3)^{2}}{\frac{x-3}{2}} \checkmark$ No K_c expression, correct substitution/Max = 8 Wrong K_c expression Max = 6 ∴ x = 4,29 mol ✓

OPTION 2/OPSIE 2

$n = \frac{m}{M}$	$C = \frac{n}{V}$
$=\frac{168}{28}$	$=\frac{6}{2}$ Divide by/Deel deur 2 \checkmark
= 6 mol	$= 3 \text{ mol} \cdot \text{dm}^{-3}$

	CO ₂	CO]
Initial concentration (mol·dm ⁻³)	×	0	
Change (mol·dm ⁻³)	1,5	3√	ratio 🗸
Equilibrium concentration (mol·dm ⁻³)	x – 1,5 √	3	

$$K_{c} = \frac{[CO]^{2}}{[CO_{2}]} \checkmark$$

$$14 \checkmark = \frac{[3]^{2}}{x - 1.5} \checkmark$$
∴ x = 2,14 mol·dm⁻³

n(CO₂) = cV = (2,14)(2) = 4,29 mol ✓

5.2.4.1	Remains the same	✓
5.2.4.2	Decrease	✓
5.2.4.3	Increase	✓

(3)

(9)

Trials I	Examination 2019	Physical Science: Paper 2 N	/lark Scheme
QUE	STION 6		
6.1	oxonium√ (or hydronium)		(1)
6.2	H_2SO_3 (acid) & HSO_3^- (base	e)√√	
	H₃O⁺(acid) & H₂O (base)✓	·	(3)
6.3.1	weak acid ionizes partially	✓ in an aqueous solution ✓	(2)
6.3.2	weak acid + strong base ✓	→ basic salt / pH above 7 at equivalence poir	nt
	thus phenolphthalein \checkmark		(3)
6.4.1	a substance in which the	e hydrogen of an acid is replaced by a catior	า√√ (2)
6.4.2	ammonia√ and sulphuri	c acid√ or	
	Ammonium hydroxide√	and sulphuric acid√	(2)
6.4.3	$(NH_4)_2SO_4 + 2H_2O \xrightarrow{}} SO_4$	$O_4^{2-} + 2NH_3 + 2H_3O^+ \qquad \checkmark \checkmark \checkmark \checkmark$	(3)
	$NH_4^+ + H_2O NH_3 + H_3$	$^{3}O^{+}$ (accept for 3 marks) $\checkmark \checkmark \checkmark$	
6.4.4	This is a SAGS explana	tion	
	the measure of concent	ration of hydronium ion (H ₃ O ⁺) \checkmark	
	… in water at 25ºC ✔		(2)
6.4.5	any value less than 7√		(1)
6.5.1	one of known concentra	tion $\checkmark\checkmark$	(2)
6.5.2	$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + $	+ 2H ₂ O products ✓ ✓ ; balancing ✓	(3)
6.5.3	n = CV; = 0,2 x (15/1000);	= 0,003 mol√	
	Ratio 2:1√;		
	0,003 / 2 = 0,0015 mol√ o	f H ₂ SO ₄	
	C = n / V; = 0,0015 / (20/1	000)√;	
	c _a = 0,075mol.d	m ⁻³ ✓	(5)
			[29]

Trials	Examination	2019

(1)

(4)

QUESTION 7

7.1	Anode	$Cr \rightarrow Cr^{3+} + 3e^{-}$	$\checkmark\checkmark$	(2)

7.2 Ag⁺

7.3 Cr (s) / Cr³⁺ (aq, 1mol.dm⁻³)// Ag⁺(aq, 1mol.dm⁻³) / Ag (s) at 25° C

Correct cell notation✓Salt bridge✓Phase indicators✓Standard conditions✓

7.4
$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = 0,80 - (-0,74) = 1,54 V$$
 $\checkmark \checkmark \checkmark$ (3)

- 7.5 Emf will increase ✓. The forward reaction at the silver cathode will be favoured ✓ due to the increase in concentration of the Ag⁺ ions ✓. (3)
- 7.6.1 $Ag^+ + e^- \rightarrow Ag$

Ratio 1:1

n = $\Delta c \times V = (1 - 0.72) \checkmark x 0.25 = 0.07$ mol of Ag+ ions reduced \checkmark

Therefore: 0,07 mol of Ag produced (ratio 1: 1)

Gain in mass, $m = n \times M = 0.07 \times 108 \checkmark = 7.56 \text{ g of Ag deposited } \checkmark$ (4)

Marks awarded:

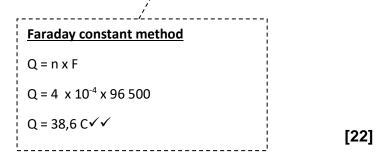
Change in C	\checkmark
Conversion of volume to 0,2	25√
Molar mass = 108 g.mol ⁻¹	\checkmark
Correct answer	\checkmark

7.6.2 Mol Ratio $Ag^+: e^-$

1:1

4 x 10⁻⁴ : 4 x 10⁻⁴

1 mol of electrons are transferred for every mol of Ag⁺ reduced, Ag⁺ + $e^- \rightarrow$ Ag


No. of electrons transferred = $4 \times 10^{-4} \times 6,02 \times 10^{23} = 2,408 \times 10^{20}$ electrons $\checkmark \checkmark$

Charge of one electron = $1,6 \times 10^{-19}$ C (data sheet)

: charge transferred = 1,6 x 10^{-19} x 2,408 x 10^{20} = 38,528 CV

Current, I = Q/t = 38,528 / 60 = 0,64 AVV

(5)

✓ ✓ ✓ ✓

7.6.2 Marking further explained ...

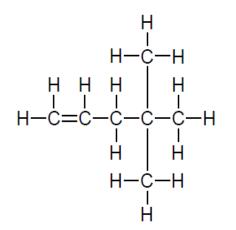
Method 1:

Ratio (or implied) = 4×10^{-4} mol Electrons transferred (x 6,02 x 10²³) Charge transferred (no electrons x 1,6 x 10⁻¹⁹) Current = Q / t; = Q / **60** Answer

Method 2:

Q = n x F (formula) = 4 x 10^{-4} × 96 500 ×	✓
= 38,6	
Current = Q / t ; = $Q / 60$	\checkmark
Answer	\checkmark

Trials Examination 2019		Physical Science: Paper 2	Mark Scheme
QUESTION 8			
8.1	electrical energy to chemical energy ✓ ✓		(2)
8.2	Asbestos		(1)
8.3.1	$2C\ell^- \rightarrow C\ell_2 + 2e^- (-1 \text{ per error})$		(2)
8.3.2	$2H_2O + 2e^- \rightarrow H_2 + 2OH^- (-1 \text{ per})$	error)	(2)
8.3.3	$2C\ell^- + 2H_2O \rightarrow C\ell_2 + H_2 + 2OH$	(-1 per error)	(2)
	Note: -1 in total for 8.3.1	 8.3.3 for using double arrows. 	
8.4.1			
Purification of water Bleach Making PVC Making hydrochloric acid Making insecticides (1)			
8.4.2			
Making nylon Hardening of margarine and oils Making NH3 to make fertiliser (1)			
8.5	Cl⁻ ✓		(1)
8.6.1			
	Membrane in membrane	e cell only allows Na⁺ ions to pass through) √
	Therefore NaCl can form membrane cell ✓	n in cathode compartment of asbestos cel	l but not of (3)
8.6.2	membrane cell is cheap	er (to run and to set up)√	
	Asbestos cell is toxic; m	embrane cell is not ✓	(2)
			[17]


(1)

(1)

QUESTION 9

- 9.1.1 An atom or group of atoms that form the centre of chemical activity in the molecule ✓ ✓ (2)
- 9.1.2 Hydroxyl√
- 9.1.3 $4,4\checkmark$ -di \checkmark methylpentan 1 \checkmark -ol \checkmark (-1 for each error) (4)
- 9.2.1 (A series of similar compounds which have) the same functional group and have the same general formula, in which each member differs from the previous one by a single CH2 unit. ✓ ✓ (2)
- 9.2.2 Alkenes√
- 9.2.3 Double bond in correct place√
 - 2 methyl groups√

Rest of molecule correct√

Double bond in correct place Rest of structure correct

- (3)
- 9.3.1 Halogenation / bromination \checkmark (1)

9.3.2 CH₂CHCH₂C(CH₃)₂CH₃ + Br2 $\checkmark \rightarrow$ CH₂BrCHBrCH₂C(CH₃)₂CH₃ $\checkmark \checkmark$ (3)

9.4.1 Elimination (dehydration) ✓ (1)9.4.2 Ester ✓ (1) $2C_7H_{16}O + 21O_2 \rightarrow 14CO_2 + 16H_2O$ (products $\checkmark \checkmark$) (balancing $\checkmark \checkmark$) 9.5 (4) 9.6 $CH_2=CH-CH_2-CH_2-CH_2-CH_2-CH_3$ OR CH₂CHCH₂CH₂CH₂CH₂CH₂CH₃ OR CH₂CH(CH₂)₄CH₃ (2) 9.7.1 Addition (hydrogenation) (1) 9.7.2 Alkanes (1) [27]