Time: 3 hours

Hilton College; Chemistry Trial Exam PII; 2015

Marks: 200

1.1 D√√

- 1.2 A√√
- 1.3 A√√
- 1.4 C√√
- 1.5 C√√ 1.6 B√√
- 1.6 B√√ 1.7 C√√
- 1.7 CVV 1.8 B√√
- 1.0 BVV 1.9 BV√
- 1.10 D√√

Question 2:

2.1	The mass (in grams) ✓ of 1 mol of a substance √.		(2)
2.2	Cu	$n = \frac{m}{M} = \frac{19,05}{63,5\checkmark} = 0,3 \ mol \checkmark$	
	HNO ₃	$n = c.V = (1,4).(0,5) \checkmark = 0,7 mol \checkmark$	(4)

2.3
$$N = n. N_A = (0,3). (6,02 \times 10^{23} \text{ s}) = 1,806 \times 10^{23} \text{ s}$$
 (2)

2.4 Carried over from 2.2

Cu	:	HNO ₃	
3 mol	:	8 mol√	
0,3 mol	:	0,8 mol√	
HNO ₃ is the limiting reactant as only 0,7 mol. \checkmark (3)			

2.5 Carried over from 2.4

HNO₃	:	H₂O
8 mol	:	4 mol√
1 mol	:	0,5 mol
0,7 mol	:	0,35 mol√

$$m = n.M = (0,35).(18) = 6,3 \text{ gV}$$
 (3)

2.6 Carried over from 2.4

HNO ₃	:	NO
8 mol	:	2 mol
1 mol	:	0,25 mol

Page **1** of **6**

HILTON COLLEGE GRADE 12	AUGUST 2015	PAPER II MARK SCHEME
0,7 mol : 0,175 mo	pl√	
$V = n. V_m = (0, 175).(22, 4) =$	3,92 dm³ ✓	
$\%$ yield = $\frac{Actual}{Theoretical} \times 100 =$	= ³ / _{3,92} √× 100 = <mark>76,5 % √</mark>	(4)
		[17]

Question 3:

3.1.1	A sharing of at least one pair of electrons \checkmark by two atoms \checkmark .	(2)
3.1.2	To melt diamond we need energy to break the strong \checkmark covalent bonds.	
	Each carbon atom forms 4 covalent bonds.	(2)
3.2.1	A measure of the tendency of an atom to attract \checkmark a shared pair of electrons \checkmark . (2)	2)
3.2.2	Boron: electronegativity = 2	,
	Nitrogen: electronegativity = 3	
	Difference in electronegativity = $3 - 2 = 1\sqrt{2}$	
	Polar√ covalent√ bond (3	3)
3.3.1	Strong \checkmark ionic bond \checkmark (electrostatic force).	2)
3.3.2	In MgO, the cations and anions have double the charge \checkmark of the ions in NaCl. leading	na to
	stronger \checkmark electrostatic forces. (2)	2)
3.4.1.1	1 Dipole – dipole \checkmark forces (*	1)
3.4.1.2	$2 \text{ Hydrogen bond} \sqrt{\text{ force.}}$	1)
3.4.2	Within a molecule, a hydrogen atom is bonded to a small atom with a high	• /
01112	electronegativity leading to a strongly polar molecule \checkmark	
	This allows the hydrogen atom in one molecule to be attracted \checkmark to and to get very	
	$close \checkmark$ to the negative end of a neighbouring molecule.	3)
3.4.3	The H ₂ Te molecule has the greater electron density \checkmark leading to stronger \checkmark dipole -	_
	dipole forces.	2)
	[2	-/ 201
	-	
4.1	Smaller than Y	1)
4.2	Refers to relationship between dependent and independent variables. $\checkmark\checkmark$	(2)
	Examples ·	(-)
	Reaction rate (or volume of hydrogen gas produced per unit time) increases with in	crease in
	concentration.	
	OR	
	Reaction rate (or volume of hydrogen gas produced per unit time) decreases with in	ncrease in
	concentration.	
	OR	
	The higher the concentration (of HCI) the faster the rate of the reaction	
4.3	Fair test	
	OR Mg the controlled variable	
	OR Mg is constant	
	OR to ensure there is only one variable $\sqrt{2}$	

4.4.1 60 cm³

✓

HILTO	ON COLLEGE	GRADE 12	AUGUST 2015	PAPER II MARK SCH	EME
4.4.2	42 cm ³	\checkmark		(1)	
4.5	Experiment 1 The gradient /	✓ slope (of tanger	nt to graph) is steeper.	✓ OR	
16	The number of	piete quickiy	t / mass of Majusod in both	(2)	
4.0	same. ✓		T mass of Mg used in both	(1)	
4.7	Reaction rate OR	increases with ir	ncrease in concentration. \checkmark	\checkmark	
	Reaction rate concentration	(volume of hydro	ogen gas formed per unit tim	ne) decreases with decrease in (2)	
4.8	a) Remai	ins the same	\checkmark	(1)	
	b) Increa	ses ✓		(1)	
				[14]	
<u>Quest</u>	ion 5				
5.1	When the forv	vard reaction cor	itinues to proceed at an equ	al rate ✓ to the reverse	
	reaction ✓ in a	closed system			(3)
5.2	$t_2 - t_3 \checkmark$ OI	R $t_4 - t_5$ C	$\mathbf{DR} \mathbf{t_6} - \mathbf{t_7}$		(1)
5.3.1	Conc of N ₂ was $N_2 :: [N_2]$ and	as increased / mo [H ₂] decreases a	ore N ₂ added \checkmark . Forward rend [NH ₃] increases \checkmark .	action favoured ✓ to use up	(3)
5.3.2	Increase in ter	mp ✓. Reverse	reaction has been favoured	(endothermic) ✓ to remove	
	heat from the	system, and [NH	$I_3]\downarrow$, and more N_2 and H_2 ar	re formed ✓.	(3)
5.4.1	Increase in pr	essure √√			
	(decrease vol	ume)			
5.4.2	↑ P favours th	e reaction which	leads to fewer ✓ moles of g	gas, i.e. forward reaction ✓ is	
	favoured lead	ing to more NH_3	being formed ✓.		(3)
5.5.1	$Kc - \frac{[NH_B]}{[N_B][H_B]^B}$	11			(2)
5.5.2	$C_{H_2} = \frac{n}{v} = \frac{1,23}{2}$	8			
	= 0,6	4 mol.dm ^{−3} 🖌			
	$\cap_{H_2} = \frac{49,6}{28} = 1$,77 mol ✔ C _{N2} =	$=\frac{n}{n}=\frac{1,77}{2}=0,89$		
	V 12,31		n 0,55		
∩ _{NH₈} =	$\overline{Vo} = \frac{1}{22,4}$	= 0,55 mol ✔ C _{NI}	$H_{g} = \frac{1}{v} = \frac{1}{2} = 0,28 \text{ mol. c}$	im [−] 3 ¥	
	$K_c = \frac{(0,28)^2}{0,89.(0,64)}$, = 0,34			(7)
5.5.3	Lies to the left	OR low yield Ol	R high concentration of reac	tants. 🗸 🗸	(2)
5.6.1	stay the sa		- •		. ,
5.6.2	increase 🗸	\checkmark			
5.6.3	stay the sa	me √√			(3)
					[29]

HILTO	ON COLLEGE GRADE 12	AUGUST 2015	PAPER II MARK SCHEME
6.1	proton donor√ ✓		(2)
6.2	oxonium√ (or hydronium)		(1)
6.3	H₂SO₃ (acid) & HSO₃⁻(base)√		
	H₃O⁺(base) & H₂O (acid)✓		(2)
6.4	acts as either acid or base $\checkmark \checkmark$		(2)
6.5.1	weak acid ionizes partially \checkmark in an a	queous solution√	(2)
6.5.2	weak acid + strong base \checkmark > basic	salt√ / pH above 7 at equivale	ence point
	thus phenolphthalein		. (3)
6.6.1	one of known concentration $\checkmark \checkmark$		(2)
6.6.2	$n = cV = (0.2)(0.3)\sqrt{10.2} = 0.06 \text{ mol}\sqrt{10.2}$		(-)
0.0.2	$m = nM = (0.06)(56) \checkmark$		
	$= 3.36 q \checkmark$		(4)
663	$-0,000$ concentration \checkmark of H ₂ O ⁺ \checkmark in wa	ter at 25C	(2)
664	$H_{2}SO_{4} + 2KOH \rightarrow K_{2}SO_{4} + 2H_{2}O$	$\operatorname{products} \sqrt{\sqrt{2}}$ halancing $\sqrt{2}$	(2)
665	$n = C_{1}^{1/2} = 0.2 \times (15/1000) = 0.003$		(3)
0.0.5	H = 0.000 Ratio 2:1.4:	inor,	
	0.002/2 = 0.0015 moly of H SO		
	$0,003/2 = 0,00131101 + 01H_2SO_4$		
	$C = 11/V_{,} = 0.0015/(20/1000)^{\circ}$		
	$C_a = 0.075 \text{mol.dm}^\circ \text{V}$		(5)
71	Electrical to chemical		[27]
7.1			
7.2			
7.3	$AI + 5E \rightarrow AI$	ad is generated by seel a fear	il fuel (which releases
7.4	every CO into the etmosphere (ed is generated by coal, a los	
0.4	extra CO2 into the atmosphere*. C	arbon anodes react with oxyge	env to produce CO ₂
8.1	cathode		
8.2	SIIVer		
8.3	$Ag^+ + e \rightarrow Ag$		
84	$\Omega = 1xt = 0.5 x 3600 = 1800 Cv$		
0.1	$V_{\rm restance} = O_{\rm Tot}/O_{\rm r} = 1800/1 {\rm fe} {\rm x} 10^{-19}$	$\sqrt{-1.125 \times 10^{22}}$	
	$1 e^{-1}$ reduces $1 \times \Delta a^+$ (1:1 ratio 1 ook	r = 1,120,10	
	Thus 1 125 $\times 10^{22}$ Ag atoms \checkmark		
	$n = N/N_{\odot} = 1.125 \times 10^{22}/6.02 \times 10^{23} =$	0.010 mol/	
	$11 = 10/10^{4} = 1,123210^{-2}/0,02210^{-3} =$	0,013 1101* *	
	NB: For a question like this we c	ould also start with moles ar	nd you can work out time,
	for example. Using the mole ratio	between electrons and soli	d is important.

1 mol of Ag: 1 mol electrons Calculate number of electrons: $N_e = n X 6,02 X 10^{23}$ Total charge = $N_e X 1,6 X 10^{-19}$ Therefore time = total charge/current

- 8.5 Silver anode is oxidised and keeps supplying Ag⁺ to electrolyte.
- 8.6 Plastic does not conduct electricity \checkmark whereas graphite does \checkmark .
- 8.7 Platinum is more expensive than silver.

- 9.1 Concentration of electrolyte must be 1mol/dm³. Temperature must be 25^oC.
- 9.2 a substance that donates electrons $\checkmark \checkmark$
- 9.3 Mg is a better reducing agent than silver; therefore oxidation will take place at the Mg electrode
- 9.4 Mg/Mg²⁺√ (1 mol.dm⁻³, 298K) //Ag⁺/Ag√ (1 mol.dm⁻³, 298K) ... conditions√
- 9.5 Mg + 2Ag⁺ \rightarrow Mg²⁺ + 2Ag $\checkmark \checkmark$ balancing \checkmark
- 9.6 $E^{0}_{CELL} = E^{0}_{CATH} E^{0}_{ANOD} \checkmark = 0,8-(-2,37)\checkmark = 3,17 V\checkmark$
- 9.7 INCREASE ✓, according to Le Chateliers the forward reaction will be favoured ✓ to remove excess Ag⁺ thus ↑V.✓

10.1.1 4,5-dimethyl√-2-hexyne√	(2)
10.1.2 carbon dioxide√: water√	(2)
10.2.1 2-chloro√-1-fluoro√-3-methyl√pentane√	(3)
10.2.2 haloalkane√	(1)
10.3.1 1-butene	(2)
10.3.2 addition / hydrohalogenation ✓	(1)
10.3.3 CH ₃ CH ₂ CHClCH ₃ \checkmark 2-chlorobutane \checkmark	(2)
Or CH ₃ CH ₂ CH ₂ CH ₂ Cl✓ 1-chlorobutane✓	
10.4.1 carboxyl group✓ or drawn	(1)
10.4.2 1-propanol√√(or propanal)	(2)
10.4.3 oxidation√	(1)
10.5.1 esterification / condensation ✓	(1)
10.5.2 B: methanol√; C: propanoic acid√	(2)
10.5.3 it catalyses the reaction ✓	(1)
10.5.4 Bumping stones in test tube prevent violent splashing while boiling	J√
Heat using water bath not open flame because reagents are flamr	nable√ (2)
10.5.5 methyl ✓propanoate✓	(2)

10.5.6

(2)

(2)

10.5.7 The isomer (butanoic acid) will have higher bp ✓– it has strong hydrogen bonding ✓ between molecules as opposed to weak van der Waals IMF's between ester molecules ✓. (3)

[34]