<u>MEMO</u>

<u>Qu 1</u>

1.1 A **✓ ✓** each

С

- 1.2
- C 1.3
- С
- 1.4 А
- 1.5 В
- 1.6 В
- 1.7 А
- 1.8 С
- 1.9 В
- 1.10 D

<u>Qu 2</u>

2.1	The reaction rate of a catalysed reaction is greater than that of an uncatalysed	(2)
		(2)
2.2	Time✓	(1)
2.3	Volume of oxygen (Accepted absence and presence of $\underline{catalyst}$) \checkmark	(1)
2.4	These are the variables that need to be kept constant so that they do not influence the outcome of the experiment. $\checkmark \checkmark$ When controlled they ensure a fair test.	(2)
2.5	Same concentration of H_2O_2 (aq) Same apparatus Temperature (Any 3) $\checkmark \checkmark \checkmark$	(3)
2.6	Time delay in starting due to having to place stopper. $\checkmark 2^{nd}$ person could start or practice process. \checkmark Delay in reading gas syringe. \checkmark Repeat and average readings \checkmark	(4)
		(4)
2.7	There is a huge increase in the amount of bubbles formed. $\checkmark\checkmark$	(2)
2.8	A catalyst is a substance that increases the rate of a chemical reaction without being chemically changed in the reaction. It lowers the activation energy needed for the reaction. \checkmark	(2)

2.9

- 2.10 As the reaction proceeds, the concentration of the H₂O₂(aq) decreases ✓ the rate of the reaction will decrease due to fewer collisions per unit time. ✓ (one mark if rate of reaction indicated by the gradient decrease).
- 2.10 5 minutes✓

(1)

Qu 3If a system that is in equilibrium is disturbed, the equilibrium position will change in 3.1 order to oppose the disturbing influence and re-establish equilibrium.		
3.2	Rate of the forward reaction equals the rate of the reverse reaction $\checkmark\checkmark$	(2)
3.3	 A remains constant ✓ B remains constant C increases D increases E increases F increases G decreases H remains constant 	(0)
	I Increases	(9)
3.4.1	$Kc = \frac{[N_2 O].[O_2]}{[NO_2].[NO]} \checkmark = \frac{0.18 \times 0.38}{0.06 \times 0.29} \checkmark \checkmark = 3,93 \checkmark$	(4)
3.4.2	Temperature 🗸	(1)
3.4.3	Kc only affected by a change in temperature. ✓ Decrease in temp favours exothermic reaction which is the reverse reaction ✓ [Reactants] increases ∴ Kc decreases	(2)
3.5	3.5.1 Water has a very low ability \checkmark to ionize.	(1)
	3.5.2 K_c or K_w values change \checkmark at different temperatures. \checkmark	(2)
	3.5.3 $[H_3O^+] = 1 \times 10^{-7} \text{ mol.dm}^{-3} \checkmark \checkmark$	(2)

<u>Qu 4</u>

4.1	Temperature of 25 °C / 298 K \checkmark	
	Concentration of 1 mol.dm ⁻³ \checkmark	(2)

4.2 Zinc sulphate /
$$ZnSO_4 \checkmark$$
 or any soluble zinc salt (1)

(1)

(1)

(2)

(1)

4.3 Zinc / Zn
$$\checkmark$$
 If Zn²⁺ (zero marks)

4.4
$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \sqrt{}$$

 $1,72 \sqrt{} = E^{\circ}_{cathode} - (-0,76) \sqrt{}$
 $E^{\circ}_{cathode} = 1,72 - 0,76 = 0,96 \text{ V} \sqrt{}$
 \therefore The substance is NO(g) $\sqrt{}$ Also accept NO₃⁻ and HNO₃ (5)
4.5 $Zn/Zn^{2+} //NO_3^{-}, H^+/NO,Pt$ [Can ignore H⁺ and Pt] (4)

4.7 DECREASES
$$\checkmark$$
 (1)

4.8 Net cell reaction is:
$$Zn + NO_3^- \rightarrow Zn^{2+} + NO$$

Increase in $[Zn^{2+}]$ decreases the tendency of net cell reaction to proceed from L to R $\checkmark \checkmark$ Any change that decreases this tendency decreases emf \checkmark (3)

OR

According to LCP, if [Zn²⁺] increases, reaction shifts to left. \checkmark The tendency of the net cell reaction to proceed from L to R decreases \checkmark Any change that decreases this tendency decreases emf \checkmark

4.9.2 The electrodes (or anode and cathode) have the same emf \checkmark $\therefore E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = 0 V \checkmark$

4.9.3 NO

4.9.4 The
$$Zn^{2+}$$
 ions in the electrolyte oxidize Zn to Zn^{2+} (in anode half cell)
The Zn reduces Zn^{2+} ions to Zn

An equilibrium is established:
$$Zn \rightleftharpoons Zn^{2+} + 2\bar{e}$$
 (3)

<u>Qu 5</u>

5.1 Current√

5.2 Must both be 1.5 V AA batteries \checkmark

5.3

			Battery A	Battery B
	Current drawn, I (A)	Inverse of current, $1/I^{(A^{-1})}$	Time of operation, t (min)	Time of operation, t (min)
Animal light	0,5	2	305	264
Small gift torch	1	1	160	132
Dancing Santa	1,5	0,67	90	88
Toothbrush	2	0,5	70	66

Accept temperature

5.4 Note: Battery A data is on either side of a straight line.

Battery B data is on a straight line.

(8)

5.6.1 contain a moist paste√

(1)

(1)

(1)

(2)

5.6.3 Alkaline must contain more electrolyte \checkmark \therefore it must either be more concentrated or the electrodes inside the casing must be smaller to enable more to fit in. \checkmark (2)

- 5.7.2 Zn + 2 MnO₂ \rightarrow ZnO + Mn₂O₃ $\checkmark \checkmark$
- 5.8 The expensive batteries are rechargeable ✓ (secondary) batteries while the dry cells used by the girls are primary batteries which cannot be recharged. ✓ (2)
- 5.9 Toothbrush ✓ draws a bigger current and used at least twice a day ∴ makes economic sense to use rechargeable batteries because you would need to replace the primary battery often. ✓ (2)
- 5.10The cost of the batteries required often exceeds the cost of the toy they are used in and needs to be taken into consideration. $\checkmark \checkmark$ (or other logical conclusion?) (2)

<u>Qu 6</u>

6.1

 $2C \ell^- + \rightarrow C \ell_2 + 2e^- \checkmark$ $2H2O + 2e(\rightarrow H2 + 2OH^- \checkmark$

6.2

$E\theta cell = E\theta cathode - E\theta anode$	
$= -0.83 - (1.36) \checkmark$	
= -2,19 V ✓	
The negative value for E_{cell}^{θ} indicates that the reaction is not spontaneous. \checkmark	
	(5)

6.3

Chlorine gas: making PVC or another appropriate use ✓ Hydrogen gas: making ammonia or another appropriate use ✓ Sodium hydroxide: making soap or another appropriate use ✓ (6)

6.4

The mercury cathode process results in losses of mercury into the environment which are problematic as mercury is highly toxic to all forms of life. \checkmark The diaphragm cell uses asbestos which is harmful to humans causing cancer of the respiratory tract and lungs. \checkmark

(4)

(4)

(2)

[19]

<u>Qu 7</u>

7.1	7.1.1 C✓	
	7.1.2 AV	
	7.1.3 D✓	
	7.1.4 B✓	(4)
7.2	7.2.1 $CH_4 \checkmark + C\ell_2 \checkmark \rightarrow CH_3 C\ell \checkmark + HC\ell \checkmark$ [In structural formula!]	(4)
	7.2.2 1-Chloro propane 🗸 🗸	(2)
	7.2.3 ethene√	(1)
	7.2.4 $CH_3CH_2CH_2C\ell$ + $H_2O\checkmark$ \rightarrow $CH_3CH_2CH_2OH\checkmark$ + $HC\ell\checkmark$	
	[In structural formula!]	(3)
7.3	7.3.1 The electron pair is not shared equally ✓ – O is more electronega and attracts the shared pair stronger to make the bond polar.	tive √ than H (2)
	7.3.2 O₂ molecules are kept together by weak van der Waals forces v molecules have stronger hydrogen bonds v keeping them togethe higher boiling point. v	vhile methanol er and therefore the (3)
7.4	 7.4.1 Compounds having the same molecular ✓ formula but a different s formula. ✓ A series of similar compounds ✓ which have the same functional consecutive members differ by –CH₂. ✓ 	structural group √ and whose (4)
	7.4.2 3-methyl but-1-ene✓✓✓	(3)
7.5	7.5.1 3-bromo-3-methyl pentane	(2)
	7.5.2 Elimination or dehydrohalogenation \checkmark	(2)
		30 marks
<u>Qu 8</u>		
8.1	O II	
	$-C - O - \checkmark \checkmark$	(2)
8.2	1,2,3 – propantriol \checkmark	(2)
8.3	Pleasant / sweet smells	(2)
8.4	warm√concentrated sulphuric acid√	(2)

8 marks

<u>Qu 9</u>

9.1	Long chains of monomers covalently bonded together.	(2)
9.2	$ \begin{array}{c} H & H \\ I & I \\ C = C \\ I & I \\ OH & H \end{array} $	(2)
9.3	4√√	(2)
9.4	addition v polymerization	(2)
9.5	9.5.1 thermoplastics	(2)
	9.5.2 light weight, strong, unaffected by water, thermal insulators etc. $\checkmark \checkmark$	(2)
	9.5.3 not biodegradable	(2)
	9.5.4 clear stand motivation	(3)
		17 marks