- 1.1 D
- 1.2 D
- 1.3 C
- 1.4 C
- 1.5 D
- 1.6 C
- 1.7 B
- 1.8 B
- 1.9 B
- 1.10 D

2.1.1	Ne✓	(1)
2.1.2	N₂✓	(1)
2.1.3	diamond✓	(1)
2.1.4	NH₃✓	(1)
2.1.5	NaCl√	(1)
2.1.6	NH₃✓	(1)
2.1.7	N₂ or diamond✓	(1)
2.2.1	Water or H ₂ O✓	(1)
2.2.2	lon√-dipole√ force	(2)
2.2.3	$Mg(NO_3)_2(s) \rightarrow Mg^{2+\checkmark}$ (aq) + 2 $\checkmark NO_3^{-1} \checkmark$ (aq) ; phase indicators \checkmark	(4)
2.2.4	n = c.V	
	= 0,15 x 0,2 ✓ (conversion)	
	= $0.03 \checkmark (\checkmark)$ mol of Mg(NO ₃) ₂	
	$n = 2 \times 0.03 = 0.06 \checkmark$ mol of NO ₃ ⁻ (coe from 2.2.3)	(3)
2.2.5	n = c.V	
	$= 0,5 \times 0,2$	
	= 0,1 mol of NO_{3} ions in total	
	n = $(0,1 - 0,06) = 0,04$ mol of NO ₃ ⁻ ions added from sodium nitrate.	
	(coe from Q2.2.4)	
	M = n x M	
	= 0,04 x 85	
	= 3,4 g of $NaNO_3$	(5)

Marks the following skills:

 $\checkmark\checkmark$ Method to work of total mols of NO3⁻ including conversion

- ✓ Subtraction to get NO₃⁻ ions added from sodium nitrate
- ✓ Molar mass 85
- ✓ Mass of NaNO₃

 $[NO_3] = 2 \times 0,15 = 0,3 \text{ mol.dm}^3 \text{ from magnesium nitrate}$

Added $[NO_3^-] = 0.5 - 0.3 = 0.2 \text{ mol.dm}^{-3}$

Since NaNO₃ is 1:1

Therefore [NaNO₃] = 0,2 mol.dm⁻³

```
n = cV
= 0,2 x 0,2
= 0,04 mol
And m = nM
= 0,04 x 85
= 3,4g
```

[22]

3.1.1	Heat of reaction is the net \checkmark change of chemical potential energy \checkmark of the system.	(2)
3.1.2	The activated complex is a temporary transition state \checkmark between the reactants and the products. \checkmark	(2)
3.2	The colliding particles must have enough kinetic energy greater than or equal to the activation energy. $\checkmark\checkmark$ The colliding particles must have the correct orientation. $\checkmark\checkmark$. (4)
3.3.1	Zn + 2HCl → ZnCl ₂ + H ₂ reactants \checkmark products \checkmark bal \checkmark	(3)
3.3.2	Use powdered or granulated $zinc \checkmark \checkmark$ (increase surface area 1 mark only) Use concentrated hydrochloric $acid \checkmark \checkmark$ (increase [] 1 mark only) Heat the test-tube of reactants $\checkmark \checkmark$	(6)
3.3.3	It interacts with the reactants in such a way that the reaction follows an alternative path \checkmark of lower activation energy \checkmark .	(2)
3.4.1	C	(1)
3.4.2	D	(1) [21]

- 4.1.1 When an external stress is applied to a system in chemical equilibrium ✓, the equilibrium point will change in such a way as to counteract the stress ✓. (2)
- 4.1.2 A measure of the extent of a reaction ✓, generally measured by comparing the amount of product against the amount of product that is possible. ✓ (2)
- 4.1.3 Decrease volume of the container ✓
 This will increase the pressure ✓ which will favour the forward reaction ✓
 which produces less moles of gas ✓ (and therefore relieves the stress of high pressure.
 (4)
- 4.2.1 (a) DCE is reached when the rate of the forward reaction is equal to the rate of the reverse reaction. (1)
 - (b) There is no change in the number of moles (and hence concentration) of any of the gases after 25 s as shown by the data. (1)

4.2.3
$$\underline{2} P \rightleftharpoons \underline{3} Q + \underline{1} R$$
 (Accept: $4P \rightleftharpoons 6Q + 2R$) (3)
4.2.4 $K_{c} = \frac{[Q]^{3} \cdot [R]}{[P]^{2}}$ c.o.e. from Question 4.2.3 (2)
4.2.5 $K_{c} = \frac{\left[\frac{6}{5}\right]^{3} \cdot \left[\frac{2}{5}\right]}{\left[\frac{5}{5}\right]^{2}}$ $\frac{Marks n_{p} = 5 \text{ mol } c.o.e. from Question 4.2.4 n_{Q} = 6 \text{ mol } n_{R} = 2 \text{ mol } Divide by volume (5 dm^{3})$
 $K_{c} = 0,69$ OR
 $K_{c} = \frac{(1,2)^{3} \cdot (0,4)}{(1)^{2}}$ (5)
4.2.6 Low yield c.o.e. from Question 4.2.5 (5)

- 5.1 A strong acid ionises almost completely \checkmark in an aqueous solution, e.g. HY \checkmark A weak acid ionises partially in an aqueous solution, e.g. H₂X or HZ. (4)
- 5.2 A monoprotic acid is only able to donate one \checkmark proton, e.g. HY or HZ. \checkmark A polyprotic acid is able to donate more than one proton, e.g. H₂X. (4)
- 5.3 HY \checkmark since it has the highest K_a \checkmark which means it is the strongest acid and would have the highest concentration of H₃O⁺ ions. (3)

5.4
$$\begin{array}{l}H_2X + 2H_2O \leftrightarrows 2H_3O^+ + X^{2-} \quad \text{ions balanced}\\Or \quad H_2X + H_2O \leftrightarrows H_3O^+ + HX^- \quad \text{ions balanced}\end{array}$$
(3)

5.5.2
$$n = c \times V$$

= 0,1 × 0,0324
= 0,00324 mol or 3,24 × 10⁻³ mol \checkmark

5.5.3 $\begin{array}{ll} c = n/V & \underline{Alternative} \text{ (not recommended but will be accepted)} \\ = \underline{0.00324} & \underline{C_A V_A} \\ = 0,13 \text{ mol.dm}^{-3} & \underline{C_B V_B} = \frac{n_A}{n_B} \\ = 0,13 \text{ mol.dm}^{-3} & \underline{C_A \times 25,0} \\ & \underline{C_A \times 25,0} \\ & 0,1 \times 32,4 \end{array} = \frac{1}{1} \\ & C_A = 0,13 \text{ mol.dm}^{-3} \end{array}$ (3)

- 5.5.4 Greater than 7 ✓ Na⁺ and OH⁻ form the strong base NaOH which remains fully dissociated. ✓ Z⁻ will undergo hydrolysis ✓ and (accept protons from water) ✓ leading to an excess of OH⁻ ions. ✓ (✓)
- 5.5.5 (a) Phenolphthalein.
 - (b) The indicator will change to the end-point or equivalence point colour over the pH range given ✓, therefore the final pH of the solution (in this case >7) must fall within the pH range of the indicator ✓ (2)

[31]

(1)

(3)

6.1	Electrolyte concentration = $1 \text{ mol} \cdot \text{dm}^{-3}$ Temperature = 25 °C Pressure = 1 atmosphere /101 kPa/1,01 × 10 ⁵ Pa	(3)
6.2	CuSO ₄ / Cu(NO ₃) ₂ / CuCl ₂	(2)
6.3.1	$Cu \rightarrow Cu^{2+} + 2e^{-}$	(2)
6.3.2	$Cl_2 + 2e^- \rightarrow 2Cl^-$	(2)
6.3.3	Cu + Cl ₂ → Cu ²⁺ + 2Cl ⁻ (-1 for any error)	
6.4	$E^{\theta} \text{ cell} = E^{\theta} \text{ cathode} - E^{\theta} \text{ anode}$ = 1,36 - 0,34 = 1,02V	(4)
6.5	$Cu/Cu^{2+}(1 \text{ mol} \cdot dm^{-3}) // C\ell_2 / C\ell^{-}(1 \text{ mol} \cdot dm^{-3}) / Pt$	(4)
	√anode	
	✓salt bridge	
	✓cathode	
	✓Pt	
6.6		
•	Pt is an inert metal (must not react electrochemically in the cell) Pt is a good conductor of electricity.	(2)
6.7 6.8	Potassium chloride/Sodium nitrate (etc.)	(2)
• • •	Anode – increase in concentration of cations. Cathode- decrease in concentration of cations ✓ Ionic imbalance✓ Cations move into cathode half- cell and anions move into anode half cell OR ions from salt bridge move to each half cell to maintain ionic balance	(▲)
		(⁻⁷⁾
		L-'J

To act as an ion-selective \checkmark membrane which only allows Na ⁺ ions to pass through into the cathode. \checkmark		
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$		
H ₂ O is a stronger oxidising agent than \checkmark Na ⁺ (aq) \checkmark		
 Skills to be marked: Minutes to seconds (150s) ✓ Calculating Q√ Method 1 Mol of e⁻√ Mol ratio 1:2√ Mol of Cl₂√ Calculating Volume ✓ ✓ Method 2 No. of e⁻ √ Calculating mol of e⁻√ Mol ratio 1:2√ Calculating mol of e⁻√ Calculating mol of e⁻√ Calculating volume √ √ 		
Method 2 $1e^{-} = 1.6 \times 10^{-19} \text{C}$ \therefore no of $e^{-} = \frac{600\ 000}{1.6 \times 10^{-19}}$ $n(e^{-}) = 3.75 \times 10^{24} e^{-}$ $n = \frac{N}{N_{A}}$ $= \frac{3.75 \times 10^{24} e^{-}}{6.02 \times 10^{23}}$ n = 6.23 mol $C\ell_{2}: e^{-}$ 1:2 $n(C\ell_{2}) = \frac{6.23}{2}$ = 3.12 $n = \frac{V}{V_{m}}$ $V = nV_{m}$ $= 3.12 \times 22.4$ $V = 60.90 \text{ dm}^{3} \text{ of } C\ell_{2}$		
	Method 2 1e ⁻ = 1,6 × 10 ⁻¹⁹ C ∴ no of e ⁻ = $\frac{600\ 000}{1,6 \times 10^{-19}}$ n(e ⁻) = 3,75 × 10 ²⁴ e ⁻ n = $\frac{N}{N_A}$ = $\frac{3,75 \times 10^{24}e^-}{6,02 \times 10^{23}}$ n = 6,23 mol Cl ₂ : e ⁻ 1 : 2 n(Cl ₂) = $\frac{6,23}{2}$ = 3,12 n = $\frac{N}{V_m}$ V = nVm = 3,12 × 22,4 V = 69,89 dm ³ of Cl ₂	

[14]

8.1.1	В	(1)	
8.1.2	A and F	(2)	
8.1.3	C and H (must have both, no part marks)		
8.2	alcohol	(1)	
8.3	4 carbons in longest chain Methyl on C ₂ Double bond between C ₁ & C ₂ and between C ₃ & C ₄ Correct number of H's attached to each C $H \xrightarrow{H}_{H \xrightarrow{C} C} = C \xrightarrow{H}_{C} = C \xrightarrow{H}_{H}$ $H \xrightarrow{H}_{H \xrightarrow{C} C} = H$	(4)	
8.4	2-bromo-3-ethylhexane	(4)	

(2-bromo) √-(3-ethyl) √hex√ane√

8.5

H H I I H H н н н Н Н Н О | | | // H - C - C - C - C | | | О - Н Н Н ,0 // 1 1 I 1 н Н Н + H₂O + C - C - C - C0 – H н Ċ Ċ С н I L L 1 1 О-С-С-С-Н L I 1 н н н н н н н н н I L н н Н

Ester linkage \checkmark Either side of ester linkage $\checkmark \checkmark$ Reactants $\checkmark \checkmark$ water \checkmark

(6)

8.6 ONE of the following:

8.7 Ethanoic acid is able to form **TWO hydrogen bonds**✓ with another ethanoic acid molecule.

Propan-1-ol can only form **ONE** hydrogen ✓ bond with another propan-1-ol Molecule.

TWO hydrogen bonds per molecule are collectively **stronger** than $ONE \checkmark$ **More energy** is needed to overcome two H-bonds compared with one H-bond therefore, ethanoic acid has a higher boiling point. (4)

(4)

[28]

9.1	X = methanol	Y = hex-1-ene	Z= ethanoic acid	(3)
9.2	CH₂CHCH₃ + Br₂ Each reactant Pro	→ CH₂BrCHB duct	IrCH₃	(3)
9.3	CH₃CH₂CH₂CH₂O Reactant both Pro	H ——→ CH₃CH₂C ducts	HCH ₂ + H ₂ O	(3) [9]