

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)

COMMON TEST

MARCH 2018

MARKS: 50

TIME: 1 Hour

This question paper consists of 8 pages including 2 data sheets.

Copyright Reserved

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- 1. Write your name and other information in the appropriate spaces on the ANSWER BOOK.
- 2. The question paper consists of FOUR questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave one line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable pocket calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places where applicable.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE - CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A - D) next to the question number (1.1. - 1.4) in the ANSWER BOOK, for example 1.5 D.

- Which ONE of the compounds represented below is an UNSATURATED 1.1 hydrocarbon?
 - Α CH₂CHCH₃
 - В CH₃CH₂CH₃
 - C CH₃(CH₂)₃CH₃
 - D CH₃C(CH₃)₂CH₃ (2)
- 1.2 A compound that is an isomer of methyl pentanoate is . . .
 - Α ethyl butanoate
 - В pentanoic acid
 - C hexane - 1,2 - diol
 - methyl methanoate (2)
- 1.3 The formula of an organic compound is given below:

The correct IUPAC name for the above compound is . . .

- 1-bromo-2,3-dimethylbutane. Α
- 1-bromo-2,3-dimethylpentane. В
- C 1-bromo-3-ethyl-2-methylbutane.
- 1-bromo-2-ethyl-3-methylpentane. (2)
- 1.4 Which ONE of the following statements is NOT TRUE?
 - Α Water is formed in condensation polymerisation.
 - В Addition polymers form more slowly than condensation polymers.
 - C The monomers of addition polymers contain carbon-carbon double bonds.
 - D The monomers of condensation polymers contain functional groups such as alcohols and carboxylic acids.

(2)

[8]

QUESTION 2 (Start on a new page.)

Consider the following representation of organic compounds **A** to **H** listed in the table below to answer the questions that follow:

Α	4-ethyl-2,2-dimethylhexane	В	O CH3 — CH2 — CH2— C—H
С	H H H 	D	O CH3—CH2—C—O—CH2—CH3
Е	CH ₃ CH ₃ CH ₂ CH ₂ C - Br CH ₃	F	Pentane

2.1 Write down the:

- 2.1.1 Name of the functional group of compound C. (1)
- 2.1.2 General formula of the homologous series to which compound A belongs. (1)
- 2.1.3 Structural formula for compound A. (3)
- 2.1.4 Letter representing the compound which is an aldehyde. (1)
- 2.2 Write down the letters that represent TWO compounds that are FUNCTIONAL ISOMERS of each other, in the above table. (1)
- 2.3 Is compound E, a PRIMARY, SECONDARY or TERTIARY haloalkane?

 Give a reason for the answer. (2)

2.4 Compound D is prepared in the laboratory.

- 2.4.1 How can one quickly establish whether compound D is indeed formed? (1)
- 2.4.2 Write down the IUPAC name of the ORGANIC ACID required to prepare compound D. (2)

2.5 A 10,00g sample of compound F undergoes complete combustion. The equation below illustrates the reaction that occurs:

$$C_5H_{12} + 8 O_2 \longrightarrow 5 CO_2 + 6 H_2O$$

Calculate the volume of CO₂ that will be produced at 25 °C, if the molar volume of CO₂ at this temperature is 24 000,00 cm³.

(4)

[16]

QUESTION 3 (Start on a new page.)

An experiment was conducted to determine the boiling points of the isomers of C₅H₁₂. The following data was obtained:

ISOMER	BOILING POINT
Pentane	36 °C
2-methylbutane	25 °C
2,2 - dimethylpropane	10 °C

- 3.1 For this investigation, write down the:
 - 3.1.1 dependant variable.

(1)

3.1.2 independent variable.

(1)

3.2 Define boiling point. (2)

3.3 Explain fully the trend in boiling points as depicted in the table. (4)

Which compound, pentane or 2-methylbutane, has a lower vapour pressure? 3.4 Give a reason for the answer.

(2)

- A learner observes, in another experiment, that although both propan-1-ol and 3.5 ethanoic acid have the same molecular mass, their boiling points differ.
 - 3.5.1 Which compound propan-1-ol or ethanoic acid will have the higher boiling point.

(2)

3.5.2 Refer to the type and strength of the intermolecular forces to account for the difference in boiling points.

(3)

[15]

QUESTION 4 (Start on a new page.)

In the flow diagram below, the letters X, Y and Z represent organic reactions, while the letters P and Q represent organic compounds.

4.1 Reaction X represents a substitution reaction.

- 4.1.1. Give a reason why reaction X CANNOT be an addition reaction. (1)
- 4.1.2 Write down the name of this substitution reaction. (1)
- 4.1.3 Write down the structural formula of compound Q. (2)
- 4.2 Write down the type of:
 - 4.2.1 Elimination reaction represented by Z. (1)
 - 4.2.2 Addition reaction represented by Y. (1)
- 4.3 For the reaction Z write down:
 - 4.3.1 The name of the inorganic reagent needed. (1)
 - 4.3.2 TWO reaction conditions needed. (2)
- Write down the condensed structural formula of the POSITIONAL ISOMER of compound P. (2)

TOTAL MARKS: 50

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Тθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$					
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$					
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH = -log[H ₃ O ⁺]					
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$						
$E_{cell}^\theta = E_{cathode}^\theta - E_{anode}^\theta \ / E_{sel}^\theta = E_{katode}^\theta - E_{anode}^\theta$						
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$						
$\begin{array}{ c c c c c } \hline \text{or/of} \\ E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} \end{array}$	$=E^{\theta}_{oksideermiddel}-E^{\theta}_{reduseermiddel}$					

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMEN

18	2	Ë	4	10	S	20	18	Ar	40	36	츳	84	54	Xe	131	98	R	***************************************		14		3	175	103	۲
17				တ	止 0'⊅	19	17	3,0		35	8,S യ		53	- 5'2	127	85	5,5 At			70	2;	X V	173	102	^o N
16				8	O 3'2	16	16	ડ ,5		34	2,4 Se	79	52	2,1 Te	128	84	2,0 Po			03	² I	Ε	169	101	Md
5 5				7	Ζ 0'ε	14	15	2,1		33	S'O AS		51	6,1 S	122	83	<mark>تم</mark> 6'۱	209		03	8 1	Ţ	167	100	F
4 §					ن ۲,5	12	14	8,1 <u>S</u>		32	8,1 Ge	73	20	8,1 Sn	119	82	8,1 P	207		22	> :	은	165	66	Es
13					2,0 0	11	13	1.5 AE	27	31	9,1 Ga	70	49	<u>ا</u> ۲'۱	115	81	8,1 T	204		33	3 (ŝ	163	98	ţ
12										30	9'1 9'1			ν Cq	112	80	H	201		n n	3 j	0	159	97	쩞
/										29	9,1 Cu	63,5	47	9,1 Ag	108	79	Au	197		2	5 (5	157	96	CH
10				mbol	Simbool			c mass	massa	28	ا 8	59	46	2,2 Pd	106	78	F	195		23	3 [П	152	95	Am
6	number aetal			1	7			e atomi	e atoom		8,1 0	59	45	2,2 2	103	77		192		63	2 (S	150	94	Pu
∞	Atoomaetal	-	29	6	, t	, ,	—	Approximate relative atomic mass	elatiewe					2,2 Ru						61	5 (Ę.		93	S N
7	Q.			ivity	witeit			oximate	iderde r		3,1			ا _{1,9} 2,2		************	Re			09	3 =	S	144	92)
9	EUTEL			Electronegativity	onegativ			Appr	Bena		ور م	52		8,1 0	96	74	>	184		50	3 6	چ ج	141	91	Pa
S	KEYISLEUTEL			Electi	Elektr						ا'و 1	51	41	S S	92	73	Ta	181		ğ	3 (و د	140	90	F
4											۳ ۱,5	48		7 ,	91		ا _{,6} 6	179				7			
ო											Sc.	45		≻	83	22	La	139	89	Ac					
∾ 🗐					4,5 Be	6		Z'I	24	20		40	38	٥,١ ي	88		e,0 Ba	137	88	e,0					
-	1	Τ	-	က		7	7		23	19		33	37	8,0 80 0 t	98	52		133	87						
												-			-		-					-			

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTHAFRICA

PHYSICAL SCIENCES: CHEMISTRY (P2)

COMMON TEST

MARCH 2018

MEMORANDUM

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS

: 50

TIME

: 1 hour

This memorandum consists of 4 pages.

The marking guidelines as per 2014 Examination Guidelines, pages 34-37 must be applied when marking this Paper.

QUESTION 1

1.1 A
$$\checkmark\checkmark$$

1.2
$$A\checkmark\checkmark$$

1.3
$$B\checkmark\checkmark$$
 (2)

[6]

QUESTION 2

2.1.2
$$C_nH_{2n+2}$$
 (1)

2.1.3 - 6 C parent chain✓

- all 3 branches correctly placed√
- whole structure correct√

(3)

2.2 B and C
$$\checkmark$$
 (1)

2.3 tertiary√

The C that is bonded to the halogen group is bonded to three other carbon atoms ✓

(2)

2.4.2 propanoic acid
$$\checkmark\checkmark$$
 (2)

2.5
$$n(CO_2) = 5n(C_5H_{12})$$
 = $5(m/M)$ = $5(10/72)$ = $0,694$ mols \checkmark Number of moles Formula

substitution

(4)

[16]

 $= 16,656 \text{ dm}^3 \checkmark$

		Ÿ

QUESTION 3

	3.1.1	Boiling point✓	(1)
	3.1.2	length of carbon chain/surface area/branching	(1)
	3.2	the temperature \checkmark at which the vapour pressure of liquid equals the atmospheric pressure. \checkmark	(2)
	3.3	The boiling point decreases from pentane to 2,2 – dimethylpropane. From pentane to 2,2 – dimethylpropane, the length of the carbon chain decreases/surface area decreases/number of branches increases. ✓ The amount of London forces decreases ✓ resulting in weaker intermolecular ✓ forces that require less energy to overcome. ✓ OR	
		The boiling point increases from 2,2 – dimethylpropane to pentane. From 2,2 – dimethylpropane to pentane, the length of the carbon chain increases/surface area increases/number of branches decreases. The amount of London forces increases resulting in stronger intermolecular forces that require more energy to overcome.	1215e
	3.4	pentane. Has a higher boiling point, (As Vapour pressure increases the boiling Point decreases). Accept the between pentane motecules.	(2)
•	3.5.1	ethanoic acid√√	(2)
J	3.5.2	Propan-1 - ol has London forces and <u>one Hydrogen Bond</u> between adjacent molecules. Ethanoic acid has London forces and <u>two Hydrogen Bonds</u> between adjacent molecules. There are stronger intermolecular forces between ethanoic	
		acid molecules. ✓	(3) [15]

QUESTION 4

4.1.1 The reactant for X is saturated/contains only single bonds/contains no multiple
Bonds between carbon atoms✓
(1)

(1)

4.1.2 Hydrolysis ✓

4.1.3

4.2.1 dehydrohalogenation ✓

(1)

4.2.2 hydration√

(1)

4.3.1 sodium hydroxide/potassium hydroxide/ (Name not formula). (1)

4.3.2 heat (strongly) ✓ dissolve NaOH in ethanol/concentrated NaOH ✓

(2)

4.4

$$CH_2 = CH - CH - CH_3$$

$$CH_3 \qquad Must be condensed,$$

$$OR$$

$$CH_3 - CH_2 - C = CH_2$$

$$CH_3$$

Functional group✓ Whole structure✓

(2) **[11]**

TOTAL MARKS: [50]