

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATIONS 2015

MEMORANDUM

SUBJECT: PHY

PHYSICAL SCIENCES P2 (10842)

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATIONS

PHYSICAL SCIENCES (Second Paper)

MEMORANDUM

QUEST	ION 1
1.1	C√√
1.2	B✓✓
1,3	D✓✓
1.4	C√√
1.5	B✓✓
1.6	A✓✓
1.7	A✓✓
1.8	A√√
1.9	B√√
. 1.10	C√√

C✓	(1)
A 🗸	(1)
Butanal ✓	(1)
2–methyl√butan -2-ol ✓	(2)
OR 2-methyl-2-butanol	
Water / H₂O ✓	(1)
	A ✓ Butanal ✓ 2-methyl ✓ butan -2-ol ✓ OR 2-methyl-2-butanol

- - Correct functional group ✓
 Methyl group on the second carbon ✓
 - Whole structure ✓

Notes:

• Condensed or semi-structural formula: $\frac{1}{3}$

• Molecular formula: $\frac{0}{3}$

(3)

- 2.3.3 Addition / Hydration ✓ (1)
- 2.4.1 Process by which molecules of two monomers with different functional groups ✓ react with the elimination/loss of water molecules. ✓
- 2.4.2 F✓ (1) [13]

3.1.1 Organic compounds having the <u>same molecular formula</u> ✓ with the <u>same functional group</u> situated at <u>different positions</u>. ✓ or same side chain at different positions

OR

Organic compounds with the <u>same molecular formula</u>, ✓ but <u>different</u> <u>positions of the side chain / functional groups</u>. ✓

(2)

3.1.2
$$H H$$

 $H - \stackrel{|}{C} - \stackrel{|}{C} - C = C - H \checkmark$
 $H H$ (1)

But -1-yne ✓ /1-butyne ✓ (1)

 $H \stackrel{H}{\longrightarrow} C \equiv C \stackrel{H}{\longrightarrow} C = H$ $H \stackrel{H}{\longrightarrow} H$ (1)

But-2-yne √/2-butyne

(1)

Reactants✓ Products✓✓

(3)

Condensed/semi-structural formulae:	Max: ² / ₃	
Molecular formula;	0/3	in in the second se
Any additional reactant or products:	Max: $^{2}/_{3}$	

3.2.2 Propene ✓ and methylpropane ✓

(2)

3.3.1 The temperature ✓at which the vapour pressure of a liquid is equal to the external/ atmospheric pressure ✓ **OR**

The <u>temperature</u> ✓at which a <u>liquid changes phase into the gaseous</u> phase. 1/2

(2)

3.3.2 <u>Propan -1-.ol</u> has only <u>one hydrogen bond</u> ✓ between its molecules.

Thus, propan – 1 – ol has <u>weaker intermolecular forces</u> between its molecules. ✓ ∴ <u>Less energy</u> is needed to overcome these intermolecular forces, ✓ thus propan – 1 – ol has a lower boiling point. **OR**<u>Propanoic acid</u> has <u>two hydrogen bonds</u> ✓ between its molecules.

The <u>intermolecular forces</u> between the propanoic acid molecules <u>are thus</u> <u>stronger</u> ✓ ∴ <u>more energy</u> is needed to overcome these forces, ✓ thus propanoic acid has a higher boiling point.

(3)

[16]

- 4.1.1 **Q:** Substitution ✓/halogenation/chlorination (1)
- 4.1.2 **R:** Elimination/ dehydrohalogenation/ dehydrobromination√ (1)
- 4.2.1
- H H H H C H

Functional group

 Whole structure correct

Accept –OH condensed in structural formula

(2)

Condensed/semi – structural formulae Max: $^{1}/_{2}$ Molecular formula $^{0}/_{2}$

4.2.2 Propan
$$-2 - ol \checkmark$$
 (1)

2-propanol

4.3.1 Hydrogen bromide ✓

(1)

- Functional group√
- Whole structure correct✓

Accept HBr

Ignore: ⇌

• Condensed/semi-structural formulae

Max: $\frac{3}{4}$

Molecular formula

 $0/_{A}$

Any additional reactant or products:

Everything correct, wrong balancing

Max: $^{3}/_{4}$

Max: $^{3}/_{4}$

(4) [10]

5.1.1 Surface area/state of division/reaction surface√

(1)

5.1.2 There are more particles available for reaction. ✓ /more collisions.

There are a greater number of effective collisions ✓ per unit of time ✓

∴ reaction rate increases

(3)

5.1.3 Mass of 15% of original 2 g=0,3 g√ Number of moles of CaCO₃ 0,3 g:

(5)

5.2.1 Concentration√

 $V = 0.03 \text{ dm}^3 \checkmark$

(1)

5.2.2 Equal to ✓

(1)

5.2.3 The <u>same number of moles/mass/ number of particles</u> of CaCO₃ ✓ (produce <u>same number of moles of carbon dioxide</u>). CaCO₃ is the limiting agent/Acid is in excess.

(1)

6.1 <u>CALCULATIONS USING NUMBER OF MOLES:</u>

Mark allocation:

- **USING** formula $n = \frac{3.01x10^{23}}{6.02x10^{23}} \checkmark$
- Change in n(NO) = Initial mol equilibrium mol√
- Using ratio NO(g): O₂(g): NO₂(g) = 2:1:2√ to determine change in n(O₂) and change in n(NO₂)
- Equilibrium [NO] = equilibrium n(NO) /0,05 Equilibrium [O₂] = equilibrium n(NO₂) /0,05 Equilibrium [NO₂] = equilibrium n(NO₂) /0,05
- Correct K_c expression (formulae in [])√
- Substitution of concentrations and K_c value into K_c expression√
- [O₂] at equilibrium√
- n(O₂) at equilibrium (x 0,05) ✓
- n(O₂) initial = n at equilibrium + n change√

OPTION 1

$$n(NO) = \frac{3.01 \times 10^{23}}{6.02 \times 10^{23}} = 5 \times 10^{-3} \text{ mol}$$

	NO(g)	O ₂ (g)	NO ₂ (g)		
Initial moles	1	0,5006✓	0		
Change in moles	0,995√	0,4975	0,995	✓ mole ratio	
Equilibrium moles	0,005	0,0031√	0,995	✓ divide by 0,05	
Equilibrium concentration	0,1	0,0615	19,9		

$$K_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2}[O_{2}]}$$

$$6,44 \times 10^{5} = \frac{(19,9)^{2}}{(0,1)^{2}[O_{2}]}$$

$$[O_{2}] = 0,0615 \text{ mol} \cdot \text{dm}^{-3}$$

[9]

- 6.2 Large K_c means a high yield of products compared to reactants ✓ (1)
- 6.3 Darker√ (1)
- 6.4 Temperature is decreased and the reaction will adjust to resist the change. The exothermic ✓ reaction is favoured thus the forward reaction ✓ is favoured and the contents become darker. ✓ (3)
- 6.5 No effect ✓ (1) [15]

7.3.2

7.1 Brønsted-Lowry base accepts a proton√√ (2)

7.2.1 pH =
$$-\log[H_3O^+]\checkmark$$

= $-\log(0,12)\checkmark$
= $0,92\checkmark$ (3)

- 7.2.2 $C\ell \checkmark$ (1)
- 7.3.1 It can act as <u>an acid or a base</u>/ it can <u>accept or donate an H⁺ ion√</u> (1)
- ✓ reactants✓ products✓ balancing(3)
- 7.4 Drops of water will change the concentration of the acid/ make it more dilute✓
- (1)
- 7.5.1 Option 1: Option 2:

 $HSO_4^- + H_2O \rightleftharpoons H_3O^+ + SO_4^{-2}$

$$n = \frac{m}{M}$$

$$c = \frac{m}{MV}$$

$$= \frac{8.0}{56 \checkmark}$$

$$= 0.14 \text{ mol}$$

$$c = \frac{n}{V}$$

$$c = \frac{n}{V}$$

$$c = \frac{m}{MV}$$

$$= \frac{8.0}{56 \times 0.25}$$

$$\checkmark \checkmark$$

$$= 0.57 \text{ mol·dm}^{-3} \checkmark$$

$$= \frac{0.14}{0.25} \checkmark$$
= 0.57 mol·dm⁻³ \(\square\$ (3)

7.5.2
$$c_aV_a = n_a \checkmark$$

 c_bV_b n_b (dilute acid)

$$\frac{C_{a}(40)}{(0,57)(25)} \checkmark = \frac{1}{2} \checkmark$$

OR

$$c_{a} = \frac{1 \times 0.57 \times 25 \checkmark}{2 \times 40} \qquad c_{a} = \frac{1 \times 0.57 \times 0.025 \checkmark}{2 \times 0.04}$$

$$= 0.178 \text{ mol·dm}^{-3} \qquad = 0.178 \text{ mol·dm}^{-3} \qquad (4)$$

7.5.3 Concentrated acid

 n_1 (moles concentrated) = n_2 (moles dilute)

$$c_1 \times V_1 = c_2 \times V_2$$

$$c_1 = 0.178 \times (490 + 10) \checkmark$$
 OR $c_1 = 0.178 \times 0.5 \checkmark$
 $c_1 = 0.178 \times 0.5 \checkmark$
 $c_2 = 0.178 \times 0.5 \checkmark$
 $c_3 = 0.178 \times 0.5 \checkmark$
 $c_4 = 0.178 \times 0.5 \checkmark$
 $c_5 = 0.178 \times 0.5 \checkmark$
 $c_7 = 0.178 \times 0.5 \checkmark$
 $c_8 = 0.178 \times 0.5 \checkmark$

(4)[22]

QUESTION 8

8.1 Electrical energy to chemical energy

(1)

8.2 Cathode ✓

> At cathode, Ag⁺ / silver ions gain electrons ✓ and are, reduced to Ag/ silver √ metal

(3)

(2)

8.3.1 Ag/silver ✓

(1)

8.3.2 $Ag^+ + e^- \rightarrow Ag \checkmark \checkmark$

$$Ag^{+} + e^{-} = Ag \quad (\frac{1}{2})$$

$$Ag \rightarrow Ag^{+} + e^{-} \quad (\frac{0}{2})$$

$$Ag \leftarrow Ag^{+} + e^{-} \quad (\frac{2}{2})$$

$$Ag = Ag^{+} + e^{-} \quad (\frac{0}{2})$$

$$Ag \leftarrow Ag^{\dagger} + e^{\star} \quad (\frac{2}{2})$$

$$Ag = Ag^{\dagger} + e^{-} \left(\frac{0}{2} \right)$$

8.4.1 Electrode X becomes eroded/ smaller/ thinner. ✓

(1)

8.4.2 A (silver) layer forms on the medal. ✓ (1)

The rate at which Ag⁺ / silver ions are reduced at the cathode is equal to rate 8.5 at which Ag metal/ silver is oxidised at the anode.✓✓

(2)[11]

9.1	Galvanic√ cell					
9.2	There will no reading/ The reading will be zero/ 0V√					
9.3	Temperature ✓ and the initial concentrations of the electrolytes ✓					
	But cannot give 25 °C and 1 mol·dm ⁻³ because the investigation is not carried out under standard conditions because the emf values are not for standard conditions.	(2)				
9.4	The different type of metal/the different half-cells√					
9.5.1	Voltmeter's terminals ✓ have been connected incorrectly ✓ OR Incorrect connection ✓ (+ to anode and – to cathode) ✓					
9.5.2	Aluminium is a stronger reducing agent than zinc√ and zinc is a stronger reducing agent than copper.√					
9.6.1	Aluminium/ Aℓ✓	(1)				
9.6.2	Zinc/ Zn ✓	(1)				
9.7	$2A\ell(s) + 3Zn^{2+}(aq)\checkmark \longrightarrow 2A\ell^{3+}(aq) + 3Zn(s)\checkmark$ balancing \checkmark					
	Reactants ✓ Products ✓ Balancing ✓ Ignore ⇒ Marking rule 3.9: If only a reactant(s) followed by an arrow, or only a product(s) preceded by an arrow, is/are written, marks may be awarded for the reactant(s) or product(s). If only a reactant(s) or only a product(s) are written, without an arrow, no marks are awarded for the reactant(s) or product(s).					
	Examples: $N_2 + 3H_2 \checkmark \rightarrow 2NH_3 \checkmark$ bal. \checkmark $N_2 + H_2 \rightarrow \checkmark$ $\uparrow / 3$ $\rightarrow NH_3 \checkmark$ $N_2 + H_2$ $0 / 3$ NH_3 $0 / 3$					

(3) **[14]**

- 10.1.1 Iron oxide/iron/aluminium oxide√ (1)
- 10.1.2 more collisions per unit time ✓ greater surface area/greater number of exposed particles. ✓ (2)
- 10.1.3 Increase the number of moles of N₂ and H₂ (reactants) ✓ favours the forward reaction ✓

OR

Increase pressure ✓ and thus favours the forward reaction ✓ (2)

10.2.1 Calcium hydroxide increases the pH/alkalinity of the soil/ reduce the acidity of the soil.√

Ammonium sulphate is a fertiliser. ✓ (2)

10.2.2 Ammonia gas is formed which will be released and **reduce** the concentration/number of moles/ of fertiliser. ✓ (1)

10.3 $n(NO) = \frac{m}{M} = \frac{720}{24} = 30 \text{ mol}\checkmark$ $n(HNO_3) = n(NO) = 30 \text{ mol}\checkmark$ (3)

 $m(HNO_3) = nM = (30)(63) = 1890 g \checkmark$ [11]

TOTAL: 150

