

METRO CENTRAL EDUCATION DISTRICT

GRADE 12

PHYSICAL SCIENCES: PAPER 2 (CHEMISTRY) SEPTEMBER 2016 – MARKING GUIDELINE

.

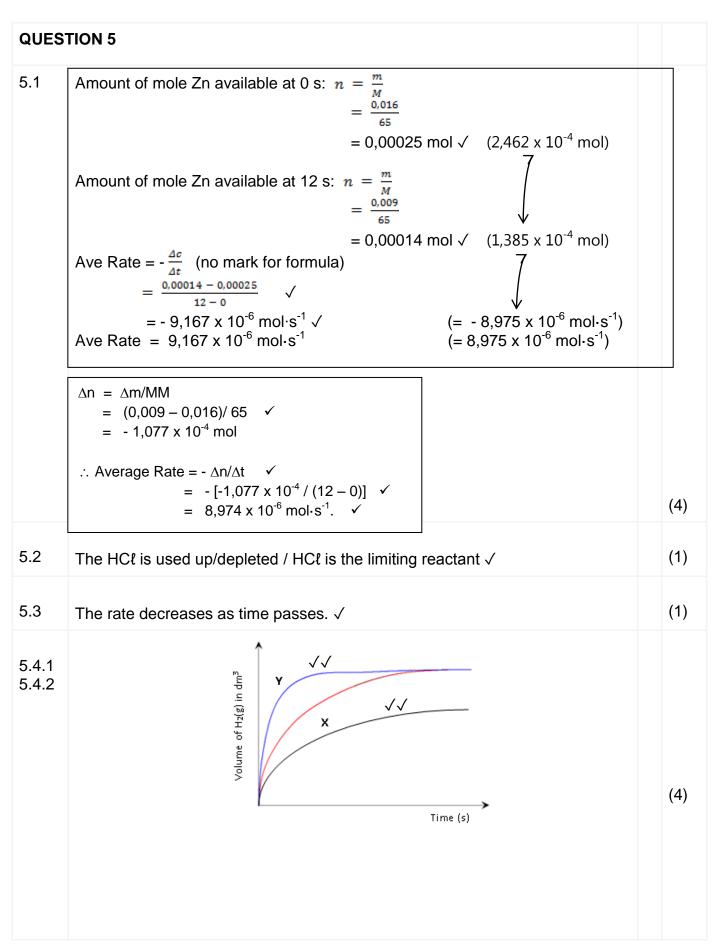
MARKS: 150 TIME: 3 hours

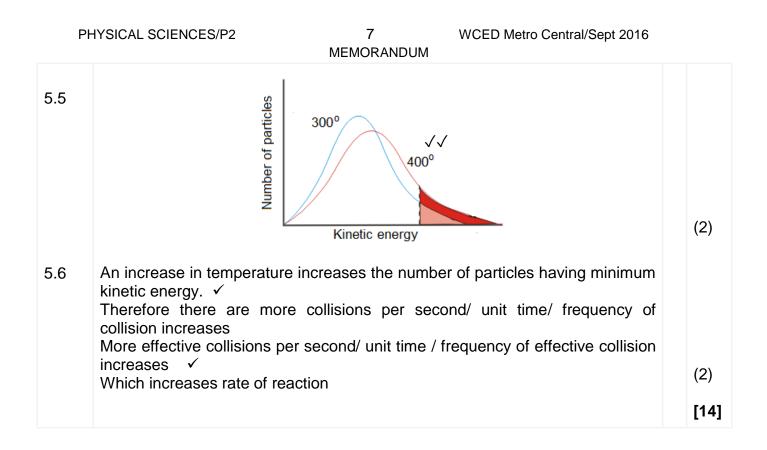
MARKING GUIDELINE

This question MEMO consists of 12 pages.

2 MEMORANDUM

QUESTION 1		
1.1	D√√	(2)
1.2	D√√	(2)
1.3	A√√	(2)
1.4	C√√	(2)
1.5	B√√	(2)
1.6	$D\checkmark\checkmark$	(2)
1.7	C√√	(2)
1.8	C√√	(2)
1.9	C√√	(2)
1.10	$D\checkmark\checkmark$	(2)
		[20]


\checkmark \checkmark \checkmark $(substituents must be in alphabetical order)[3]2.1.23-chloro-3-ethylhexane(1)2.1.3Propanal \checkmark(1)2.1.4carboxylic acids \checkmark(1)2.1.5Methanol \checkmark(1)2.1.6\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}$	QUES	TION 2	
2.1.2 3-chloro-3-ethylhexane (3) 2.1.3 Propanal \checkmark (1) 2.1.4 carboxylic acids \checkmark (1) 2.1.5 Methanol \checkmark (1) 2.1.6 $\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}$	2.1.1	between C atoms in their hydrocarbon chains. ✓ / No double or triple bonds	(1)
2.1.4 carboxylic acids \checkmark (1) 2.1.5 Methanol \checkmark (1) 2.1.6 $\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}$	2.1.2		(3)
2.1.5 Methanol \checkmark (1) \checkmark 3C single bonds 2.1.6 $H H H H O H Carboxylic acid functional group \checkmark (2)2.2.1 Propanoic acid. \checkmark (1)2.2.2 In 100 g there will be 9,81 g H , 58,85g C 31,34g Onumber of moles:H : \frac{9,81}{12} = 9,81 mole \checkmarkC : \frac{59,82}{12} = 4,904 moles \checkmarkO : \frac{31,37}{15} = 1,959 moles \checkmark9,81 : \frac{4,90}{1,96} : \frac{1,96}{1,96} : \frac{1,96}{1,96} : \frac{5}{1,96} : \frac{1,96}{1,96} : 1$	2.1.3	Propanal √	(1)
$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \\ \begin{array}{c} 2.1.6 \end{array} & \begin{array}{c} H \\ H \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} (2) \end{array} \\ \begin{array}{c} \\ (2) \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	2.1.4	carboxylic acids \checkmark	(1)
2.1.6 $ \begin{array}{c} H & H & H & H \\ H & H & H & \\ \end{array} \begin{array}{c} (2) \\ (2)$	2.1.5		(1)
2.2.2 In 100 g there will be 9,81 g H , 58,85g C 31,34g O number of moles: H : $\frac{9,81}{1} = 9,81$ mole \checkmark C : $\frac{58,82}{12} = 4,904$ moles \checkmark O : $\frac{31,37}{16} = 1,959$ moles \checkmark $\frac{9,81}{1,96}$: $\frac{4,90}{1,96}$: $\frac{1,96}{1,96}$ 5 : 2,5 : 1 10 : 5 : 2 \checkmark Molar mass/Molêre massa: 10(1) + 5(12) + 2(16) = 102 g \cdot mol^{-1} \checkmark	2.1.6		(2)
number of moles: H : $\frac{9,81}{1} = 9,81 \text{ mole } \checkmark$ C : $\frac{58,82}{12} = 4,904 \text{ moles } \checkmark$ O : $\frac{31,37}{16} = 1,959 \text{ moles } \checkmark$ $\frac{9,81}{1,96} : \frac{4,90}{1,96} : \frac{1,96}{1,96}$ 5 : 2,5 : 1 10 : 5 : 2 \checkmark Molar mass/Molêre massa: 10(1) + 5(12) + 2(16) = 102 \text{ g·mol}^{-1} \checkmark	2.2.1	Propanoic acid. ✓	(1)
n = 1	2.2.2	number of moles: H : $\frac{9,81}{1} = 9,81 \text{ mole } \checkmark$ C : $\frac{58,82}{12} = 4,904 \text{ moles } \checkmark$ O : $\frac{31,37}{16} = 1,959 \text{ moles } \checkmark$ $\frac{9,81}{1,96} : \frac{4,90}{1,96} : \frac{1,96}{1,96}$ 5 : 2,5 : 1 10 : 5 : 2 \checkmark	
(6)			
$C_5H_{10}O_2$ \checkmark		$C_5H_{10}O_2$ \checkmark	(6) [16]


4 MEMORANDUM

QUES	TION 3	
3.1	The temperature at which the vapour pressure of a substance \checkmark equals atmospheric pressure. \checkmark	(2)
3.2	2-methylpropan-2-ol √	(1)
3.3	London force / momentarily dipole forces/ dispersion forces \checkmark	(1)
3.4.1	In both pentane and 2-methylbutane there are <u>weak London/ dispersion forces</u> present. \checkmark 2-methylbutane is <u>more spherical / has a smaller surface area</u> than pentane \checkmark and therefore there are fewer/less intermolecular forces between its molecules and the <u>energy required to overcome the intermolecular forces in</u> 2-methylbutane is less than the energy required to overcome the intermolecular forces in the intermolecular forces in pentane. \checkmark therefore a lower boiling point \checkmark	(4)
3.4.2	2-methylpropan-2-ol have stronger hydrogen bonding between molecules \checkmark while pentane has weaker London/dispersion forces between its molecules. \checkmark Therefore more energy is required to overcome the IMF in 2-methylpropan-2-ol than in pentane. \checkmark And the more energy required the higher the boiling point. \checkmark	(4)
3.5	2-methylpropan-2-ol √	(1)
3.6	$n = \frac{m}{M}$	
	$M[CO_2] = 12 + 2(16) = 44$	
	(a) CO ₂ : $n = \frac{34}{44} = 0,773 \text{ mol } \checkmark$	
	(b) 0,773 mol CO ₂ is created by $\frac{0,77}{4} = 0,19$ 3 mol C ₄ H ₁₀ \checkmark	
	(c) Mass C ₄ ,H ₁₀ : m = n x M = 0,193 x [4(12) + 10(1)] = 11,19 g \checkmark	
	(d) Percentage purity = $\frac{11,2}{26} \times 100 \checkmark = 43,05 \% \checkmark$ [Accept: 43,09%]	(5)

5 WCED Metro Central/Sept 2016 MEMORANDUM

QUES	TION 4	
4.1	Cracking ✓ of alkanes	(1)
4.2.1	Addition polymerization \checkmark	(1)
4.2.2	polyethene/ polythene/ polyethelene 🗸 (any one)	(1)
4.2.3	$ \begin{array}{c c} \hline \\ \\ \hline \\$	(1)
4.3	H = C = C + H + H = C = C + H + H = C = C + H + H = C + C + H = C + C + H = C + C + H = C + C + H = C + C + H = C + C + H = C + C + H = C + C + C + H = C + C + C + H = C + C + C + C + C + C + C + C + C + C	(3)
4.4	Hydration √ +	(1)
4.5	Ethanol 🗸	(1)
4.6	Excess of a conc. strong acid $(H_2SO_4) \checkmark$ Mild heat \checkmark	(2)
4.7.1	Substitution V NOT: Halogenation/Bromination	(1)
4.7.2	Add NaBr in presence of dilute $H_2SO_4 \checkmark$ Mild heat \checkmark Add HBr and mild heat	(2)
4.7.3	Sodium hydroxide ✓ water ✓	(1) [15]

5.1	It is a dynamic equilibrium when the rate of the forward reaction equals the	
	rate of the reverse reaction $\checkmark \checkmark$ and the reactions occur simultaneously. [2 or 0]	(2)
6.2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	mass of N ₂ used during the reaction? 33,6 - 5,6 = 28 g Therefore 1 mol N ₂ was used during the reaction. \checkmark 1 mol N ₂ react with three mole H ₂ Therefore 6 g H ₂ was used during the reaction \checkmark concentration N ₂ at equilibrium: $c = \frac{m}{MV}$ $= \frac{5.6}{28 \times 5} \checkmark$ $= 0,04 \text{ mol} \cdot \text{dm}^{-3} \checkmark$ Amount H ₂ at equilibrium: $c = \frac{m}{4V}$ $= \frac{24 - 6}{2 \times 5} \checkmark$ $= 1,8 \text{ mol} \cdot \text{dm}^{-3} \checkmark$	(6)
5.3	$K_{c} = \frac{[NH_{g}]^{2}}{[H_{2}]^{2}[N_{2}]} \checkmark$ $= \frac{^{(0,4)2}}{_{(0,04)(1,8)3}} \checkmark$ $= 0,686 \checkmark$	(3)
5.4	Increases √	(1)
.5	Exothermic √	(1)
5.6	When the temperature increases, the K _c value decreases, which means the concentration of the reactants increased and the concentration of the products decreased. \checkmark Therefore the reverse reaction was favoured. \checkmark An increase of temperature favours the endothermic reaction, \checkmark therefore the forward reaction must be exothermic.	(3) [16

QUES	STION 7	
7.1	It dissociates completely in water \checkmark to produce a high concentration of OH $^{-}$ ions. \checkmark	(2)
7.2	(a) $n = \frac{m}{M}$ $= \frac{27}{137 + 2(16+1)}$ $= 0,158 \text{ mol } \checkmark$ (b) $Ba(OH)_2 \xrightarrow{H_2O} Ba^{2+} (aq) + 2 OH^{-} (aq)$ Therefore 0,158 mol Ba(OH) ₂ produces 2 x 0,158 = 0,316 mol OH ⁻ \checkmark (c) Concentration of hydroxide ions: $c = \frac{n}{V}$ $= 0,316/_2$ $= 0,158 \text{ mol·dm}^{-3}$ (d) $K_w = [OH^{-}][H^{+}] \checkmark$ $10^{-14} = [0,158][H^{+}] \checkmark$ $[H^{+}] = 6,329 \times 10^{-14} \text{ mol·dm}^{-3}$ (e) $PH = -log [H^{+}] \checkmark$ $= -log[6,329 \times 10^{-14}] \checkmark$ $= 13,19 \checkmark$ $PH = 14 - 0,801 \checkmark$ $= 13,20 \checkmark$	
7.3	Burette √	(7)
7.4	An acid is a proton (H ⁺ -ion) donor. $\sqrt{}$ (2 or 0)	(2)
7.5	$Ba(OH)_{2} + 2HC\ell \longrightarrow BaC\ell_{2} + 2H_{2}O$ $n_{b} = 1 \qquad n_{a} = 2$ $c_{b} = 0,079 \qquad c_{a} = 2,5$ $V_{b} = 2 \text{ dm}^{3} \qquad V_{a} = ?$ $0,158 \text{ mol } Ba(OH)_{2} \text{ will be neutralized by } 0,316 \text{ mol } HC\ell \checkmark$ $c = \frac{\pi}{v} \checkmark$ $2,5 = \frac{0,316}{v} \checkmark$ $V = 0,126 \text{ dm}^{-3} \text{ or } 0,13 \text{ dm}^{-3} \checkmark.$ $CaVa /_{CbVb} = \frac{na}{nb} \checkmark$	
	$(2,5)Vb/_{(0,079)(2)} = 2/1 \checkmark$ V _b = 0,126 dm ³ \checkmark	(4)

Pł	HYSICAL SCIENCES/P2	10 MEMORANDUM	WCED Metro Central/Sept 2016	
7.6	the end point for a reaction be	etween a stron	pH is around 7. \checkmark This is also ng acid and a strong base / \checkmark reaction between a strong base	(2)
7.7	REMAINS YELLOW ✓			(1) [19]

	QUES	TION 8	
	8.1	Aℓ√	(1)
	8.2.1	$A\ell \rightarrow A\ell^{3+} + 3 e^{-} \sqrt{\sqrt{2}}$	(2)
	8.2.2	Co ³⁺ √	(1)
	8.3	Decreases √	(1)
	8.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
a	ccept	$\left] A\ell(s) \left \begin{array}{c} A\ell^{3+}(aq) \\ (1 \text{ mol}\cdotdm^{\cdot3}) \end{array} \right \left \begin{array}{c} CO^{3+}(aq) \\ (1 \text{ mol}\cdotdm^{\cdot3}) \end{array} \right \left \begin{array}{c} CO^{2+}(aq) \\ (1 \text{ mol}\cdotdm^{\cdot3}) \end{array} \right \left \begin{array}{c} CO^{2+}(aq) \\ CO^{2+}(aq) \end{array} \right \left \begin{array}{c} A\ell(s) \checkmark \right \right \right $	(3)
	8.5	$E^{\Theta} = E_{reduction} - E_{oxidation} \checkmark$ $= 1,81 - (-0,76) \checkmark$ $= 2,57 \lor \checkmark$	(3)
			[11]

QUES	TION 9	
9.1	The chemical process in which electrical energy \checkmark is converted to chemical energy \checkmark	
	OR	
	The use of electrical energy \checkmark to produce a chemical change \checkmark .	(2)
9.2.1	Chlorine gas/ $C\ell_2 \checkmark$	(1)
9.2.2	Hydrogen / $H_2 \checkmark$	(1)
9.3	H_2O has a stronger oxidizing ability than Na ⁺ / Na ⁺ is a weaker oxidizing agent than $H_2O \sim \checkmark \checkmark$	(2)
9.4	 (a) Amount of mole Cl₂ that formed: n = V/22,4 = 2.24/22,4 = 0,1 mol Cl₂ formed. (b) 0,1 mol Cl₂ is formed from 0,2 mol NaCl√ 	
	 Initial amount of NaCł available n = cV = 2,5 x 0,5 √ = 1,25 mol √ (c) Amount NaCł left in solution after electrolysis: 1,25 - 0,2 = 1,05 mol √ 	(4) [10]

QUEST	ION 10	
10.1		
10.1.1	Oxygen / O ₂ √	(1)
10.1.2	Haber process √	(1)
10.1.3	$H_2SO_4 \checkmark$	(1)
10.1.4	The temperature at which the reaction takes place is approx. 450 °C and water is a vapour. \checkmark Also the H ₂ SO ₄ that will be formed is a vapour/mist and cannot be collected easily. \checkmark	(2)
10.2.1	Nitrogen \checkmark and phosphorous \checkmark	(2)
10.2.2	Mass of nutrient = ${}^{35}/_{100} \ge 40 = 14 \text{ g} \checkmark$ 50% of the fertilizer consist of phosphorous: Mass of phosphorus = 0,5 x 14 = 7 g \checkmark n = $\frac{m}{M}$ = ${}^{7}/_{31} \checkmark$ = 0,226 mol \checkmark	(4) [10]
	TOTAL	150