

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION 2017

10842

PHYSICAL SCIENCES: CHEMISTRY **SECOND PAPER**

TIME:

3 hours

MARKS: 150

15 pages + 4 information sheets + 1 answer sheet

PHYSICAL SCIENCES: Paper 2

10842E

X10

2

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

PHYSICAL SCIENCES (Second Paper)

TIME: 3 hours

MARKS: 150

INSTRUCTIONS AND INFORMATION

- This question paper consists of 9 questions. Answer ALL the questions in the ANSWER BOOK.
- Start the answer to each question on a NEW page.
- Number the answers correctly according to the numbering system used in this question paper.
- Leave ONE line open between sub-questions, for example, between QUESTION 2.1 and QUESTION 2.2.
- You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- You are advised to use the attached DATA SHEETS.
- 8. Show ALL formulae and substitutions in ALL calculations.
- Round-off your final numerical answers to a minimum of TWO decimal places.
- Give brief discussions, et cetera where required.
- 11. Write neatly and legibly.
- Detach the answer sheet for Question 4.3.1 and hand it in with your ANSWER BOOK.

PHYSICAL SCIENCES:	CHEMISTRY	3
(Second Paper)	10842/17	

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are given as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A–D) next to the question number (1.1–1.10) in the ANSWER BOOK, e.g. 1.11 D.

1.1 Which ONE of the following is the correct IUPAC name for the structure below?

- A 2-ethyl-2-methylpropane
- B 3,3-dimethylbutane
- C 2,2-dimethylbutane
- D 2-methylpentane

(2)

(2)

- 1.2 Which ONE of the following compounds is a possible product after the addition of Cl₂ to but-1-ene?
 - A CH3CH2CH2CHCL2
 - B CH3CH2CHCtCH2Ct
 - C C(CH2CH2CH2CH2C)
 - D CH₃CH₂CCℓ₂CH₃
- 1.3 The rate of a chemical reaction is increased when the surface area of the reactant is increased. This change in the rate is due to the ...
 - A increase in the density of the reactant particles.
 - B increase in the concentration of the reactant.
 - C increase in exposure of more reactant particles to a possible collision.
 - D alteration of the electrical conductivity of the reactant particles.

(2)

1.4 Which of the following is the strongest oxidizing agent?

B
$$Pb^{2+} + 2e^{-} = Pb$$
 $E^{6} = -0.13 \text{ V}$

C
$$Ni^{2+} + 2e^{-} \Rightarrow Ni$$
 $E^{0} = -0.27 \vee$

D
$$Sn^{2+} + 2e^- \neq Sn$$
 $E^0 = -0.12 V$ (2)

1.5 Consider the following results of experiments.

	Experiment 1	Experiment 2
Reactants	Powdered Cu and HCI	Chunk of Cu and HNO ₃
Temperature	20°C	10°C
Concentration of	0,6 mol·dm ⁻³ HCl	0,4 mol·dm ⁻³ HNO ₃
Acid		
Rate	Low	High

Which one of the following factors would account for the lower rate in Experiment 1?

- A Temperature
- Concentration of acid В
- Surface area of Cu C
- Nature of reactants D

(2)

The four graphs shown below were obtained from experiments involving nickel carbonate and hydrochloric acid of different concentrations. The rate of the carbon dioxide produced was measured.

Which ONE of the graphs shows the reaction that had the most concentrated hydrochloric acid?

Time (s)

(2)

(Second Paper) 10842/17

- The quantity / quantities that remain constant in all oxidation-reduction reactions is / are ...
 - A charge only.
 - В mass only.
 - C both charge and mass.
 - \Box concentration of reactants.

(2)

- A student wishes to prepare approximately 100 cm³ of an aqueous solution of 6 mol·dm⁻³ HCt using 12 mol·dm⁻³ HCt. The correct procedure to follow 1.8 is to add 50 cm³ of ...
 - 12 mol·dm⁻³ HCl to 100 cm³ of water. 12 mol·dm⁻³ HCl to 50 cm³ of water. water to 50 cm³ of 12 mol·dm⁻³ HCl.
 - В
 - C
 - water to 100 cm3 of 12 mol-dm3 HCL D

(2)

- 1.9 In the Haber process, a catalyst is used. The catalyst ...
 - increases the kinetic energy of the reactants. Α
 - В changes the ΔH of a reaction.
 - C provides a reaction path with a lower activation energy.
 - D decreases the potential energy of the products.

(2)

The dehydration of butan-2-ol is represented below. Compound Y is one of the products.

Which ONE of the following is the correct condensed structural formula for compound Y?

$$D H_3C - C - CH_2 - CH_3 (2)$$
[20]

The boiling points of organic compounds A, B, C and D, are shown in the table below.

Organic compound	d Boiling point Condensed fo		
Α	119,3	CH ₃ CH ₂ CH ₂ CH(OH)CH ₃	
В	99	CH₃CH₂OOCCH₂CH₃	
С	103	CH₃CH₂CH₂CH2CHO	
D	187	CH ₃ CH ₂ CH ₂ CH ₂ COOH	

2.1	Define	the term homologous series.	(2)
2.2	Name belong	the homologous series to which each of the following compounds .	
	2.2.1	В	(1)
	2.2.2	С	(1)
2.3	form po	c compound A is dehydrated during an acid catalysed reaction to ent-1-ene. Write down the general formula of the homologous series product.	(1)
2.4	Write d	lown the IUPAC name for organic compound D.	(2)
2.5	2.5.1	Will the boiling point of the next member in the homologues series of compound D be HIGHER THAN, LOWER THAN or EQUAL TO that of compound D?	(1)
	2.5.2	Fully explain the answer to Question 2.5.1.	(3)
2.6	Organi	c compounds consist of different types of isomers.	
	2.6.1	Define a positional isomer.	(2)
	2.6.2	Draw ONE positional isomer for organic compound A.	(2)
	2.6.3	Write down the IUPAC name for the isomer drawn as the answer to Question 2.6.2.	(2) [17]

3.1	milksh	ers prepare an organic compound (used as banana flavour in akes and ice creams), by mixing 3-methylbutan-1-ol and ethanoic a test tube.	
	3.1.1	Draw the structural formula of the product of this reaction.	(3)
	3.1.2	After the reaction in Question 3.1.1 is complete, the learners pour the contents of the test tube into some water in a beaker. What is the reason for pouring the mixture into water?	(1)
	3.1.3	Name any TWO safety precautions that should be taken during the preparation of the ester.	(2)
3.2	3.2.1	Hex-1-ene is mixed with water during a chemical reaction under specific reaction conditions and an alcohol is formed. Write down the IUPAC name of the major product that is formed during this reaction.	(2)
	3.2.2	Name the type of reaction described in Question 3.2.1.	(1)
	3.2.3	Name TWO reaction conditions for the reaction in Question 3.2.1.	(2)
3.3	The co	ompound C(CH₃)₃OH and hydrogen chloride react.	
	3.3.1	Draw the structural formula of the organic product formed.	(2)
	3.3.2	Name the products of the reaction.	(3

3.4 Octane and propane are produced in industry by the thermal cracking of longer chains of alkane molecules, as shown in the equation below. $C_{15}H_{32} \rightarrow X + C_{3}H_{6} + C_{8}H_{18}$ No catalyst was used in this reaction. Name TWO reaction conditions needed for thermal cracking in 3.4.1 REACTION I. (2) Compound X can also be produced in reaction II as shown below: $C_2H_5OH(g) \xrightarrow{\text{catalyst}} X + H_2O \qquad \Delta H = +45 \text{ kJ·mol}^{-1} \qquad \qquad (II)$ 3.4.2 Identify X. (1) 3.4.3 Name the type of elimination reaction that occurs in REACTION II. (1) 3.4.4 Define addition polymerization. (2) 3.4.5 Compound X reacts to form a polymer. Write down the name of this polymer. (1) [23]

4.1 Consider the following potential energy diagram for a reversible reaction.

For the reverse reaction, write down the value of the ...

4.2 Below is the Maxwell-Boltzman distribution curve of the distribution of the kinetic energy of molecules at two different temperatures.

4.2.1 What does the area under both graphs, **A** and **B**, to the right of the line labelled E_A represent? (1)

4.2.2 One of the reactions takes place at a high temperature. Which ONE of the graphs, **A** or **B**, represents the high temperature? (1)

4.2.3 Explain the answer to Question 4.2.2 in terms of the collision theory. (4)

4.3 The data in the table below indicates the changes in volume of N₂O₅ recorded at different time intervals.

Time (s)	0	100	200	300	400	500	600	700	800
Volume N₂O₅ (cm³)	0,100	0,081	0,066	0,054	0,044	0,035	0,029	0,023	0,019

4.3.1 Use the table above to draw a graph of the results. Use the attached graph on the ANSWER SHEET at the end of the question paper.

4.3.2 Define the term reaction rate.

(2)

(5)

4.3.3 Calculate the rate of the reaction at t = 240 s.

(3)

[18]

QUESTION 5

An equilibrium reaction for the decomposition of a reddish-brown substance, AO₂, is given below. Both products are colourless.

$$4AO_{2(g)} \rightleftharpoons 2A_2O_{3(g)} + O_{2(g)}$$

Brown

Colouriess

Initially 2,0 mol of A_2O_3 and 1,0 mol of O_2 are present in 1,0 dm³ container. Only 10,0 % of the AO_2 decomposes at equilibrium.

5.1 Define the term dynamic equilibrium.

(2)

5.2 Use the information above to calculate the equilibrium concentration of *each* species.

(6)

5.3 The volume of the container in Question 5.2 is now reduced to 0,5 dm³, while the temperature remains constant.

5.3.1 What colour change is observed? Write only BROWN or COLOURLESS.

(1)

5.3.2 Use Le Chatelier's Principle to explain the observation made in Question 5.3.1.

(3)

[12]

11

QUESTION 6

6.1 Define an acid according to the Brønsted-Lowry theory. (2)

6.2 An acid-base reaction is shown below.

Write down the name of the conjugate base of H₂PO₄. (1)

6.3 In a titration, a 20 cm³ potassium hydroxide solution was neutralized by 15 cm³ dilute sulfuric acid with a concentration of 0,1 mol·dm⁻³.

6.3.1 Which indicator will be most suitable for this titration? Choose from:

phenolphthalein methyl orange bromothymol blue

(1)

- 6.3.2 Give a reason for your choice of indicator in Question 6.3.1. (2)
- 6.3.3 Calculate the concentration of the potassium hydroxide solution. (5)
- 6.3.4 Calculate the pH of the potassium hydroxide solution in Question 6.3.3. (5)
- 6.4 The salt ammonium chloride (NH₄Cl) reacts with water.

$$NH_2^+ + H_2O \rightarrow NH_3 + H_3O^+$$

- 6.4.1 What do we call this type of reaction? (1)
- 6.4.2 What will the approximate pH of the salt solution be? Choose from EQUAL TO, SMALLER THAN 7 or GREATER THAN 7. (1)
- 6.4.3 Give a reason for the answer to Question 6.4.2. (1) [19]

A metallic object, to be plated with copper, is placed in a copper(II)sulphate solution (CuSO₄).

7.1	Identify which electrode will be the anode.	(1)
7.2	Identify the terminal to which the object must be connected.	(1)
7.3	State whether the copper ions are oxidized or reduced.	(1)
7.4	Write down the half-reaction that occurs at the cathode.	(1)
7.5	Explain why the power supply must be a DC and not an AC power source.	(3) [7]

- 8.1 The standard cell potential produced by a voltaic cell consisting of a platinum electrode in contact with a solution of Co³⁺ ions and a silver electrode in contact with a solution of Aq⁺ ions, is 1,01 V.
 - 8.1.1 Write down the cell notation of the reaction. (3)
 - 8.1.2 Identify the oxidising agent. (1)
 - 8.1.3 Write down the reducing half-reaction. (1)
- 8.2 An unknown metal, M, is connected to a hydrogen half-cell as indicated below. The metal, M, is placed in a solution of its salt, M³⁺(ag).

- 8.2.1 What is the purpose of a standard hydrogen half-cell? (1)
- 8.2.2 Name the metal labelled **X** in the hydrogen half-cell. (1)
- 8.2.3 State ONE function of the component labelled A. (1)
- 8.2.4 The reading on the voltmeter is 0,74 V. Identify the unknown metal, **M**. (2)
- 8.2.5 Use information from the Table of Standard Reduction Potentials to obtain the overall balanced redox reaction for this cell. (3)

PHYSICAL SCIENCES:	CHEMISTRY	14
(Second Paper)	10842/17	

8.2.6 How will the reading on the voltmeter change with an increase in the concentration of the M³+ ions?

Write only INCREASE, DECREASE or HAVE NO EFFECT. Give a reason for your answer.

(2)

8.2.7 Write down the reading on the voltmeter when the reaction has reached equilibrium.

(1)

8.2.8 Name TWO potential hazards associated with the use of a hydrogen half-cell.

(2) [18]

QUESTION 9

The flow diagram below shows the main steps in the industrial preparation of two important solid fertilisers.

9.1 Write down the:

9.1.1 Balanced chemical equation for the formation of the brown gas (3)

9.1.2 NAME of process Y (1)

9.1.3 Chemical FORMULA of liquid C (1)

		TOTAL:	150
		By means of a calculation determine which of these two fertilizers, D or E, will be the most suitable.	(3) [16]
		One of these fertilizers must be used to increase the potassium content of this soil.	
		Fertilizer D: 4:5:8 (25) Fertiliser E: 13:5:9 (20)	
	9.4.4	After a soil analysis, it is found that the soil has a shortage of potassium. The following two fertilizers are at your disposal.	
	9.4.3	Give a reason for the answer to Question 9.4.2.	(2)
	9.4.2	Which ONE of these fertilizers is more suitable to grow fruit?	(1)
	9.4.1	Explain the meaning of NPK ratio.	(1)
	The fa	rmer wants to grow tomatoes and other fruit.	
9.4	A farm	er stores fertilizers with NPK ratios 4:5:8 and 13:5:9.	
9.3	Mentic dams.	n TWO ways in which the use of fertilisers cause damage to rivers and	(2)
	9.2.2	B.	(1)
	9.2.1	A .	(1)
9.2	Give th	ne chemical FORMULAE or NAMES of fertilisers	

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS / TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOLISIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^b	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ^g	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro se konstante	N _A	6,02 x 10 ²³ mol

TABLE 2: FORMULAE / TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$					
$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$	$n = \frac{V}{V_M}$					
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH = - log[H ₃ O ⁺]					
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$						
$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{katode}}^{\theta} - E_{\text{anode}}^{\theta}$						
Or/of $E_{cell}^{\theta} = E^{\theta}$ reduction $-E^{\theta}$ oxidation $/E_{sel}^{\theta} = E_{reduksie}^{\theta} - E_{oksidasie}^{\theta}$						
Or/of $E_{cell}^{\theta} = E_{oxidising agent}^{\theta} - E_{reducing agent}^{\theta} / E_{sel}^{\theta} = E_{cell}^{\theta}$	e eksideermiddel — E ⁸ reduseer middel					

		<u> </u>	T	T			1
‡	\$ E 2 E	4 588	\$ \$ \$	852	2 % E	F3 \$	ë i
<u> </u>	±§	0,4 e m &	3,0 ±3,5	2 8 B K	2,5 2,-8 2 2,-8	07 Yb	29 P 92
10842/17	\$5	∞ o \$	8 x \$	38R	38 <u>2</u> 28	8	ē ≩
CHEMISTRY 101	3#	► Σ ₹		1	8 2 8 2 8 2	ន្ទាធ	8 E
	4 S	۵,6 3,0	左 않 성 r,s	5,0 2,0 2,0 3,0	20.5 25 25 25 25 25 25 25 25 25 25 25 25 25	67 165	8 10
SCIEN aper)	₽€	5°2 ⊒ ⊞ ∾	27 A2 32 1.00 1.00		表 = 뉴 2 등 설 8,r 8,r	8 9 8	8 5
PHYSICAL SCIENCES: (Second Paper)	Ç	2,0	g't	1	용 2 등 명 등 등 등 등 등	8 T 2	5 ă
	iggene agent			4,6 83,5 15	₹\$\$\$	482	\$ &
	10	- D		6'L % Ξ %	참 점 등 등 도 등 e,r	. \$2 42 42	8 &
	တစ္ဆို	Symbol	ic mass nmassa	8.5 % 8,1	점 등 등 = 5 2,s	25 E2	3 2
	7 Atomic number Atoomgetal	g 3,	ive atom we atoor	8.5 % 8,1	4 월 호 등 8 월 s,s	5 E	& ₹
	7 Aton At	<u>6'1</u>	ate relat e <i>relati</i> e	% ₹ % 8,1	2,5 5 8 8 2,5	884	S → 8
	° Ы	gativity gatiwitei	Approximate relative atomic mass Benaderde relatiewe atoommassa	2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2	4 5 8 4 ¥ ¥ 6,r	842	5 &
	5 KEYISLEUTEI	Electronegativity Elektronegatiwiteit	∢ 0	a < B	4 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	884	8 = 8
	4 Ā	w W		2 F &	342 S#\$	Name of the control o	
	473	·		25 S S	5 5 2 2 3 5 3 5 7 6 4 4	88 Ac	
	∾≘	4 % 0	2 8 2	8 % 8 E,1	2,1 B 8 8 8 8 8 8 8 13 7 13 13 13 13 13 13 13 13 13 13 13 13 13	88 Ra 226	
	- reproduite de la companya del companya del companya de la compan	z - 0 1 h	z'ı = 2 %	한 국 원 0,₽	0,1 8,0	Fr 0,9	
	+ 8	1,2 0,1	6'0 - Z N	8,0	8,0 T,0	۷,0	

TABLE 3: THE PERIODIC TABLE OF ELEMENTS / TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

Half-reactions/ <i>Halfreaksies</i>			Ε ^θ (V)
F ₂ (g) + 2e ⁻	**	2F	+ 2,87
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ² +2e ⁻	==	2H₂O	+ 1,77
MnO 4 + 8H+ + 5e	=	Mn ²⁺ + 4H ₂ O	+ 1,51
Cl ₂ (g) + 2e	**	2Ct	+ 1,36
Cr ₂ O ₇ ²⁻ + 14H* + 6e ⁻	≄	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H [*] + 4e ⁻	謺	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	123	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e	**	Pt	+ 1,20
Br ₂ (t) + 2e	ent.	2Br	+ 1,07
NO ₃ + 4H ⁺ + 3e ⁻	****	NO(g) + 2H ₂ O	+0,96
Hg ²⁺ + 2e ⁻	Aug	Hg(ℓ)	+ 0,85
Ag ⁺ + e ⁻	₩	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$	~	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	===	Fe ²⁺	+ 0.77
O ₂ (g) + 2H ⁺ + 2e ⁻	****	H_2O_2	+ 0,68
l ₂ + 2e	****	2l ⁻	+ 0,54
Cu ⁺ + e ⁻		Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e	- Arris	S + 2H₂O	+ 0,45
2H ₂ O + O ₂ + 4e	₩.	40H"	+ 0,40
Cu ²⁺ + 2e	****	Cu	+ 0,34
SO ₄ + 4H + 2e	==	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + e ⁻	~~	Cu [*]	+0,16
Sn⁴⁺ + 2e¯	100	Sn ²⁺	+ 0,15
S + 2H* + 2e	₩.	$H_2S(g)$	+0,14
2H+ 2e	**	$H_2(g)$	0,00
Fe ³⁺ + 3e ⁻	-	Fe	- 0,06
Pb ²⁺ + 2e ⁻	4-3	Pb	- 0,13
Sn ²⁺ + 2e ⁻	*****	Sn	-0,14
Ni ²⁺ + 2e ⁻	₩	Ni	- 0,27
Co ²⁺ + 2e ⁻	/**	Co	- 0,28
Cd ²⁺ + 2e	****	Cď	- 0,40
Cr ³⁺ + e ⁻	£mj.	Cr ²⁺	0,41
Fe ^{2*} + 2e ⁻	**	Fe	- 0,44
Cr ³⁺ + 3e	6	Cr _	-0,74
Zn ²⁺ + 2e ⁻	den	Zn	- 0,76
2H ₂ O + 2e	300	H₂(g) + 2OH	- 0,83
Cr²+ + 2e Mn²+ + 2e		Cr	- 0,91
Mn + 2e At ³⁺ + 3e		Mn	-1,18
At + 3e Mg ²⁺ + 2e		Aľ	- 1,66
ivig + 2e Na⁺+e⁻	***	Mg Na	- 2,36
(Va + e Ca ²⁺ + 2e ⁻		Na Ca	- 2,71
Sr ²⁺ + 2e	==	Sr	- 2,87
3: + 2e Ba ²⁺ + 2e ⁻	₩	Ba	-2,89
Cs [†] + e [*]		Cs	- 2,90
K ⁺ + e ⁻		K	-2,92
L(* + e	Series Series	L	- 2,93 - 3,05
<u> </u>		3m2	- 5,05

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

ABEL 4B: STANDAARD REDUKSIEPOTENSIAL						
Half-reactions/ <i>Halfreaksies</i>			Ε ^θ (۷)			
Li [†] + e ⁻	finy	Li	- 3,05			
K' + e	囊土	K	- 2,93			
Cs ⁺ + e ⁻	""	Cs	- 2,92			
Ba ²⁺ + 2e ⁻	dap	Ba	- 2,90			
Sr2+ + 2e	****	Sr	- 2,89			
Ca ²⁺ + 2e ⁻		Ca	- 2,87			
Na* + e-	***	Na	- 2,71			
Mg ²⁺ + 2e	****	Mg	- 2,36			
Α ⁽³⁾ + 3e	100	ΑŁ	1,66			
Mn ²⁺ + 2e ⁻	w.	Mn	1,18			
Cr ²⁺ + 2e ⁻	***	Cr	- 0,91			
2H ₂ O + 2e ⁻	÷	H ₂ (g) + 2OH ⁻	0,83			
Zn ²⁺ + 2e ⁻	4	Zn	- 0,76			
Cr ³⁺ + 3e	***	Cr	0,74			
Fe ²⁺ + 2e	Acres Acres	Fe	0,44			
Cr ³⁺ + e	dany.	Cr ²⁺	-0,41			
Cd ²⁺ + 2e		Cd	- 0,40			
Co ²⁺ + 2e ⁻	****	Co	- 0,28			
Ni ²⁺ + 2e		Ni -	- 0,27			
Sn ²⁺ + 2e ⁻	-	Sn	- 0,14			
Pb ²⁺ + 2e ⁻	Ang.	Pb	-0,13			
Fe ³⁺ + 3e ⁻	411	Fe .	- 0,06			
2H" + 2e"	444	H₂(g)	0,00			
S + 2H* + 2e*	₹11	H₂S(g)	+ 0,14			
Sn ⁴⁺ + 2e ⁻	122	Sn ²⁺	+ 0,15			
Cu ²⁺ + e ⁻		Cu*	+ 0,16			
SO ₄ ²⁺ + 4H ² + 2e ⁻	şait.	SO ₂ (g) + 2H ₂ O	+ 0,17			
Cu ²⁺ + 2e ⁻	***	Cu	+ 0,34			
2H ₂ O + O ₂ + 4e	****	40H*	+ 0,40			
SO ₂ + 4H ⁺ + 4e ⁻		S + 2H ₂ O	+ 0,45			
Cu ⁺ + e ⁻		Gu	+ 0,52			
l ₂ + 2e ⁻	////	21-	+ 0,54			
O ₂ (g) + 2H ⁺ + 2e ⁻ Fe ³⁺ + e ⁻	***	H ₂ O ₂	+ 0,68			
	pul	Fe ²⁺	+ 0,77			
NO ₃ + 2H ⁺ + e ⁻	****	NO₂(g) + H₂O	+ 0,80			
Ag [†] + e ⁻		Ag	+ 0,80			
Hg ²⁺ + 2e ⁻	=1	Hg(t)	+ 0,85			
NO ₃ + 4H ⁺ + 3e ⁻		NO(g) + 2H ₂ O	+ 0,96			
Br ₂ (t) + 2e ⁻ Pt ²⁺ + 2 e ⁻	***	2Br	+ 1,07			
		Pt Mn ²⁺ + 2H₂O	+ 1,20			
$MnO_2 + 4H^+ + 2e^-$ $O_2(0) + 4H^+ + 4e^-$		_	+ 1,23			
$O_2(g) + 4H^{+} + 4e^{-}$ $Cr_2O_7^{2-} + 14H^{+} + 6e^{-}$	- Aug.	2H ₂ O 2Cr ³⁺ + 7H ₂ O	+ 1,23			
$Cl_2O_7 + 14H + 6e$ $Cl_2(g) + 2e^-$		2Ct + /H ₂ U	+ 1,33			
$C_2(g) + 2e$ MnO ₄ + 8H [*] + 5e		2Ct Mn ²⁺ + 4H ₂ O	+ 1,36 + 1,51			
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+ 1,77			
Co ³⁺ + e ⁻		Co ^{2†}	+ 1,81			
F ₂ (g) + 2e ⁻	ź	2F-	+ 2,87			

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

PHYSICAL SCIENCES: C	HEMISTRY
----------------------	----------

(Second Paper) 10842/17

20

ANSWER SHEET

NAME:	GRADE 12:	

QUESTION 4.3.1

Hand in this ANSWER SHEET with your ANSWER BOOK.

