Physical Sciences#P2	2. NW/September2017~~ NSC – Memorandum
QUESTION 1 (Start on a new page.)	
1.1 C ✓ ✓	(2)
1.2 A ✓✓	(2)
1.3 B ✓✓	(2)
1.4 C ✓ ✓	(2)
1.5 A ✓✓	(2)
1.6 C ✓ ✓	(2)
1.7 A ✓ ✓	(2)
1.8 B ✓ ✓	(2)
1.9 D ✓✓	(2)
1.10 D ✓✓	(2)
	[20]
OUESTION A (Start on a new new)	
QUESTION 2 (Start on a new page.)	
2.1 2.1.1 E ✓ 2.1.2 F ✓	(1) (1)
2.1.3 B ✓ 2.1.4 D√	(1) (1)
3.2 Butawall	,
2.2 Butanal√√	(2)
2.3.1 Propyl ethanoate. ✓✓ 2.3.2	(2)
H H H 	✓√
N.B. Accept condensed -OH	Marking criteria structural formula: Three carbons in longest chain OH – group on terminal carbon
	Notes: One or more H-atoms omitted: ½ Condensed or semi- structural formula:1/2
UW\September2047√∪ mbnsrd mbnsrd	10 NSC – Memo

NSC - Memorandum

NW/September 2017

QUESTION 3 (Start on a new page.)

3.1

- 3.1.1 Substitution(halogenation/bromination) ✓ (1)
- 3.1.2 Substitution(hydrolysis) ✓ (1)
- 3.1.3 Elimination ✓ € sharpe chick-(1)
- CH₃CHBrCH₃ + KOH✓→CH₃CHCH₂ + H₂O + KBr ✓ bal ✓ 3.2 (3) N.B. Max 1/3 if extra product or reactant is written

3.3

- 3.3.1 Ethanoic acid √ (2)
- 3.3.2

N.B. Accept linear molecule of water.

3.4

- 3.4.1 Heat/ Sunlight/ UV light or rays/ Sun rays. (1)
- 3.4.2 Hydrogen bromide. ✓ (1)

3.5

3.5.1 A polymer formed when two monomers combine through an (2) addition reaction.

3.5.2

Marking criteria structural formula:

- Two carbons in chain
- Whole structure correct

- One or more H-atoms omitted ½
- · Condensed or semi-structural formula 1/2

[19]

(6)

Places fire over Conveight recorded

Physical Sciences/P2	4 .	NW/September 2017
•	NSC - Memorandum	·

QUESTION 4 (Start on a	new page.)
--------------	------------	------------

Contribbt recogned

4.1	4.1.1 A series of organic compounds that can be described by the same general formula. ✓✓ OR	(2)
	A series of organic compounds in which the members differ from the next with a $-CH_2$ group.	€
4.2	Alcohol. ✓	(1)
4.3	4.3.1 Molecular mass(of different homologous series).	(1)
	N.B. Accept surface area, chain length/contact area.	
	4.3.2 Vapour pressure.	(1)
	4.3.3 The larger the molecular mass, the lower the vapour pressure OR	(2)
	The smaller the molecular mass, the higher the vapour pressure.	
	N.B. Accept surface area/chain length/contact area	
4.4	Butane	
	Weak✓ London forces between its molecules✓ OR	(2)
	 London forces between its molecules√ 	
	 less energy is needed for molecules to break out of liquid and form vapour ✓ 	
	Butan -1-ol	
	 – alcohol, has stronger√ hydrogen bonds between its molecules√ OR 	(2)
	Hydrogen bonds between its molecules. ✓	
	 lots of energy is needed for molecules to break out of liquid and form vapour√ 	
4.5	Compound D✓ or (Butanol)	
	It has stronger hydrogen bonds between its molecules✓	
	Therefore more energy is required to break the bonds between the molecules ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	(3)
	N.B. Accept it has lowest vapour pressure.	

(3)
[14]

5 NSC - Memorandum NW/September 2017

QUESTION 5 (Start on a new page.)

5.1 CO₂(g) forms during the reaction. ✓ (1)

5.2 40s. ✓ The mass of the beaker and its contents remained 60,00g. ✓ (2)

5.3

nCO₂ (reacted) =
$$\frac{m(CO_2)}{M(CO_2)} \checkmark$$
$$= \frac{2,00}{44} \checkmark$$
$$= 0.05 \text{ mol} \checkmark$$

V(CO₂) at STP =
$$n(CO_2) \times Vm \checkmark$$

= $(0, 05 \times 22, 4) \checkmark$
= 1,12 dm³ \checkmark (6)

OR

1 mol
$$\rightarrow$$
 22,4 dm³
0,05 mol \rightarrow X
X = 1,12 dm³

5.4

- More particles per unit volume. ✓
- More HCℓ molecules have enough kinetic energy and correct orientation. ✓
- More effective collisions take place per second/ per unit time. ✓ (3)

N.B. Accept: Higher frequency of effective collisions

[12]

Converient recorded Blocks turn over

NSC - Memorandum

NW/September 2017

QUESTION 6 (Start on a new page.)

6.1 A reversible reaction in which the rate of the forward reaction equals to the rate of the reverse reaction. </

(2)

6.1.1
$$n(NH_3) = \frac{m}{M}$$

= $\frac{25,5}{17}$
= 1,5 mol

	N _{2(g)}	3H _{2(g)}	2NH _{3(g)}
Initial quantity(mol)	3	8	0
Change in (mol)	0,75	2,25	1,5√
Quantity at equilibrium(mol)	2,25√	5,75√	1,5
Equilibrium concentration (mol.dm ⁻³)	0,45	119	75

Ratio ✓

Divide by 5√

$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

Wrong K_c expression Max 6/9

 $= \frac{(0,3)^2}{(0,45)(1.15)^3} \checkmark$

No Kc expression Max 8/9

= 0,13

6.1.2 Smaller than ✓ ✓ K_c 1✓

(2)

(9)

6.1.3 Decrease√ Increases in temperature favours the reverse reaction (endothermic reaction) ✓ less product is formed ✓, Kc value decreases. ✓

(4)

N.B. a) Accept: equilibrium position shifts to the left.

b) The sign 🖌 means negative marking in 6.1.2 & 6.1.3 above

[17]

Commisht recovered

7 . NSC – Memorandum

NW/September 2017

QUESTION 7 (Start on a new page.)

7.1

7.1.2 Acid. ✓

7.1.3 $PO^{3}_{4}(aq) \checkmark$ (1)

7.2

7.2.2 pH = $-\log [H^+] \checkmark$

 $[H^+] = 5.01 \times 10^{-4} \text{ mol.dm}^{-3}$

$$[OH-] = \frac{10^{-14}}{[H^+]} \checkmark$$

$$= \frac{10^{-14}}{5,01x10^{-14}} \checkmark$$

$$= 0.2 \text{ mol.dm}^{-3} \checkmark$$
(5)

7.2.3 $\frac{CaVa}{CbVb} = \frac{n_a}{n_b} \checkmark$ N.B Positive marking - 7.2.2 to 7.2.3.

$$\frac{Ca(17,85)}{(0,2)(25)}\checkmark\checkmark=\frac{1}{2}\checkmark$$

$$Ca = 0.14 \text{ mol.dm}^{-3} \checkmark$$
 (5)

7.2.4 X + 16 + 1 = 56

$$X = 39 \text{ g.mol}^{-1} \checkmark$$

Diseasture of

8 NSC – Memorandum NW/September 2017

QUESTION 8 (Start on a new page.)

- 8.1 A solution/ liquid/ dissolved substance that conducts electricity through movement of ions. ✓✓
 - (2)

(3)

(2)

- 8.2 Salt-bridge. ✓
 - completes the circuit/ cell. ✓
 - maintains the cell neutrality.
 - supplies a path through which ions can move to restore neutrality. (2)
- 8.3 B ✓ Lead is a stronger reducing agent than than Pb✓ and Mg will be oxidised to Mg^{2+.} ✓
- 8.4 Pb(NO₃)₂ or Pb²⁺⁽aq)√or any saline solution with the corresponding ion
- as the cathode. (2)

8.5

8.5.1 Mg(s)
$$\checkmark \rightarrow \text{Mg}^{2+(aq)} + 2e^{-} \checkmark$$

8.5.2 Mg(g) | Mg^{2+(aq)}((1 mol·dm⁻³) | (1 mol·dm⁻³)H⁺(aq) | H₂(g) Pt(s) (3)

OR

 $Mg(g) \mid Mg^{2+(}aq) \mid I \mid H^{+}(aq) \mid H_{2}(g) \mid Pt(s)$

OR

Mg(g) | Mg²⁺ (1 mol·dm⁻³) || H⁺ (1 mol·dm⁻³) | H₂(g) Pt(s)

OR

Mg(g) 1 Mg²⁺ || H⁺ | H₂(g) Pt(s)

- 8.6 It has Pt as inert/ does not react with the H+ ions OR acid.
 - It has Pt as a conductor (of electricity) .

(1) [**15**]

N.B. QUESTION 8.6, subtract that 1 mark from the total (i.e 14 marks for it) and hence GRAND TOTAL will be 149 instead of 150 for the paper.

Contribit montrial

Physical Sciences/P2 9 NW/September 2017 NSC - Memorandum QUESTION 9 (Start on a new page.) Electrode where reduction takes place ✓✓ (2)9.2 T ✓ the negative electrode/ cathode ✓ 9.3 Cu(s) \rightarrow Cu²⁺ + 2e⁻ \checkmark Notes: $Cu(s) \rightleftharpoons Cu^{2+(aq)} + 2e^{-} (1/2)$ $Cu^{2+(aq)} + 2e^{-} \leftarrow Cu(s)$ (2/2) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ (0/2) $Cu^{2+(aq)} + 2e^- \rightleftharpoons Cu(s)$ (0/2)(2) Pt and Ag are both weaker reducing agents than copper and will be oxidised to form ions. ✓✓ (2) OR Cu is a stronger reducing agent than Ag & Pt, so it will reduce Ag & Pt. The rate at which copper is oxidised at the anode is equal to the rate at (2) [10] which copper ions are reduced at the cathode. </

QUESTION 10 (Start on a new page.)

10.1 Ostwald (process). ✓ (1)

10.2.

10.2.1 Pt (Platinum) ✓ (Accept Nickel (Ni) Temperature + 900 °C ✓ (2)

10.2.2 $4NH_3 + 5O_2(g) \checkmark \rightarrow 4NO(g) +6 H_2O \checkmark bal \checkmark$ (3)

10.2.3 Catalytic oxidation. ✓ (1)

10.2.4 Nitrogen dioxide/ Nitrogen(IV)oxide ✓ (1)

10.2.5 H₂O or Water ✓ (1)

10.3

KNO₃ ✓✓ 10.3.1 (2)

10.3.2 m(N) = $\frac{22}{39} \checkmark \checkmark x 6,35 \checkmark$

= 3,58 kg 🗸 [15]

GRAND TOTAL: 149