

# PREPARATORY EXAMINATION 2019 MARKING GUIDELINES

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) (10842)

13 pages

[20]

## **QUESTION 1**

1.1 A✓✓

- D√√ 1.2
- 1.3 D√√
- B√√ 1.4
- D√√ 1.5
- C√√ 1.6
- 1.7 D√√
- A√√ 1.8
- 1.9 C√√
- 1.10 C ✓ ✓

#### **QUESTION 2**

| 2.1 | 2.1.1 | A✓ | (1) |
|-----|-------|----|-----|
|     | 2.1.2 | A✓ | (1) |
|     | 2.1.3 | C✓ | (1) |
|     | 2.1.4 | B✓ | (1) |
|     | 2.1.5 | D✓ | (1) |

H



2.2

#### H I-C-H Н н Η IIIIII HHOHHH 2,4-dimethylhexan-3-one Н н

#### Marking guidelines:

- Correct ketone functional group ✓ • Both side chains / branches correct on • correct carbon atom ✓
- Whole structure correct ✓ •
- 2,3-dichloro-3-fluorobutanal 2.3

(3) [11]

(3)

- 3.1 Esters **V** OR carboxylic acids 3.1.1 (1) 3.1.2 Ketones ✓ (1)3.2 3.2.1 Chain isomers: Same molecular formula, but different types of chains  $\checkmark \checkmark$ (2)3.2.2 н Н Н н н н but-1-ene but-2-ene OR 1-butene OR 2-butene н Marking guideline: H--C One mark for whole structure One mark for correct IUPAC name н for each of the isomers Ĥ 2-methylprop-1-ene OR methylpropene
  - OR 2-methyl-1-propene
- 3.3 3.3.1 Butan-1-ol ✓ and pentanoic acid ✓
  - 3.3.2 Condensation ✓ **OR** esterification
- 3.4 If answered as: Butyl pentanoate has a If answered as: Butyl butanoate has a higher boiling point than butyl butanoate. lower boiling point than butyl pentanoate. Both esters have the same type of Both esters have the same type of intermolecular forces (London forces). ✓ intermolecular forces (London forces). Butyl pentanoate has a longer chain Butyl butanoate has a shorter chain therefore stronger forces between the therefore weaker intermolecular forces molecules. ✓ between the molecules. Less energy is required to overcome the More energy is required to overcome the intermolecular forces between butyl intermolecular forces between butyl pentanoate ✓ therefore the boiling point butanoate. is higher. Marking criteria same intermolecular forces must be mentioned. Their names need not be mentioned.  $\checkmark$ comparison chain length / molecular mass ✓ . energy required ✓ •

(3)

(6)

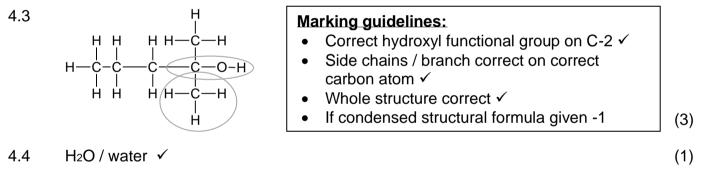
(2)

(1)

(1)

(1) [**22**]

(1) [**8**]


- 3.5.1 Addition polymerisation: A reaction in which small molecules join to form very large molecules by adding on at double bonds. ✓✓
   Condensation polymerisation: Molecules of two monomers with different functional groups undergo condensation reactions with the loss of small molecules, usually water. ✓✓
- 3.6.1 Polythene or Poliethene√
- 3.6.2 Ethene ✓

#### **QUESTION 4**

- 4.1 Elimination / dehydrohalogenation / dehydrobromination  $\checkmark$  (1)
- 4.2 heat ✓
  - <u>Concentrated</u> sodium hydroxide (NaOH) / <u>Concentrated</u> potassium hydroxide (KOH) / <u>Concentrated</u> strong base

OR

Hot ethanolic concentrated sodium hydroxide / potassium hydroxide / KOH / NaOH (2)



4.5 Addition / Hydration ✓

5.1 To prevent loss of any solution / acid from the flask  $\checkmark$ 

#### OR

To allow gas to escape

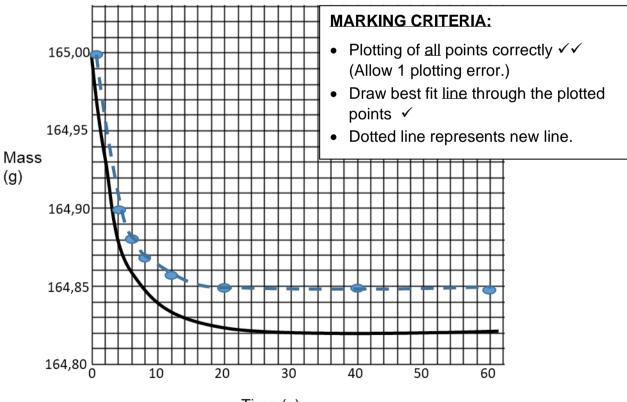
# OR

To prevent any solids / liquids getting in / out

# OR

To prevent spurting

**NOTE:** Answer must not be given in terms of preventing evaporation or condensation.


5.2 Reaction rate =  $\frac{\text{change in mass}}{\text{change in time}} = \frac{164,84 - 165,00}{10,0} \checkmark = -0,016 \text{ g} \cdot \text{s}_{-1} \checkmark$ 

Accept positive sign or no sign in the answer.

(Negative value indicates loss in mass during reaction.)

5.3.1

Graph of mass versus time





(3)

(1)

(3)

| 5.3.3 | The reaction will be faster. $\checkmark$<br>Increasing the temperature, increases the kinetic energy so that more<br>particles have kinetic energy that is higher than the activation energy. $\checkmark$<br>More collisions with correct orientation $\checkmark$ |                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|       | More successful or effective collisions per unit time take place. $\checkmark$                                                                                                                                                                                       | (4)                |
| 5.4.1 | 2 ✓                                                                                                                                                                                                                                                                  | (1)                |
| 5.4.2 | State of division changed – Size of the zinc particles increased / surface area increased – originally lumps were used. $\checkmark$<br>Exp 1 powder and exp 2 lumps                                                                                                 |                    |
|       | Accept: removed catalyst.                                                                                                                                                                                                                                            | (1)                |
| 5.4.3 | 0,5 g / half of the amount as in experiment 1. $\checkmark$                                                                                                                                                                                                          | (1)<br><b>[14]</b> |

- 6.1 A <u>catalyst</u> was used in the experiment that produced the graph for experiment C.  $\checkmark$  (1)
- 6.2 The concentration of the products in both graphs at equilibrium are the same and the concentration of the reactants at equilibrium are the same, ✓ but equilibrium was reached faster in Experiment C than in Experiment A. ✓ **OR**

Equilibrium concentration is the same, equilibrium was not disturbed.

OR

Accept:

A catalyst was added and the rate of both forward and reverse reactions were increased.

6.3 EXOTHERMIC ✓

(1)

(3)

(2)

- 6.4 negative marking from QUESTION 6.3 In experiment C the concentration of the reactants is higher than the concentration of the reactants in Experiment A when equilibrium is established. ✓
   ∴ The reverse reaction is favoured, ✓
   Endothermic reaction is favoured when the temperature is increased. ✓
   Therefore reverse reaction is endothermic OR the forward reaction is exothermic.
- 6.5 Use the data given to calculate the equilibrium constant at 500° C.

|                              | H2(g) | l2(g) | 2HI(g)           |
|------------------------------|-------|-------|------------------|
| Initial mol                  | 0,5   | 0,5   | 0                |
| Change in mol                | -0,2  | -0,2  | 0,4 🗸            |
| Mol at equilibrium           | 0,3   | 0,3   | 0,4 ratio used ✓ |
| Concentration at equilibrium | 0,3   | 0,3   | 0,4              |

|                                                                                         | MARKING CRITERIA:                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $K_{c} = \frac{[HI]^2}{[H_2][I_2]} \checkmark$                                          | <ul> <li>Change in mol of HI ✓</li> </ul>                                                                                                                                                                                                   |
| $\mathbf{H}_{\mathbf{H}_{2}} = \frac{\mathbf{H}_{2}}{[\mathbf{H}_{2}]} \mathbf{H}_{2}$  | <ul> <li>Using ratio 1:1:2 ✓</li> </ul>                                                                                                                                                                                                     |
| $= \frac{(0,4)^2}{(0,3)(0,3)} \checkmark \text{ (positive marking)}$<br>= 1,78 \scrimes | <ul> <li>Addition and subtraction to get the correct mol at equilibrium / concentration at equilibrium ✓</li> <li>Correct Kc expression ✓</li> <li>Correct substitution of concentration at equilibrium values from this table ✓</li> </ul> |
|                                                                                         | <ul> <li>Correct final answer ✓</li> </ul>                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                             |
| No Kc expression, correct substi                                                        | tution Max 5%                                                                                                                                                                                                                               |

Wrong Kc expression Max 3/6

(6)

**OPTION 2** 

Concentration of I<sub>2</sub> at equilibrium is 0,3 mol.dm-3.

c (I<sub>2</sub>) initial = 
$$\frac{n}{V}$$
  
=  $\frac{0.5}{1}$  and c (H<sub>2</sub>) initial =  $\frac{n}{V}$   
= 0.5 mol·dm<sup>-3</sup> = 0.5 mol·dm<sup>-3</sup>

|                  | H <sub>2</sub> (g) | l2(g) | 2HI(g)           |
|------------------|--------------------|-------|------------------|
| Initial          | 0,5                | 0,5   | 0                |
| concentration    |                    |       |                  |
| Change in        | -0,2               | -0,2  | 0,4 🗸            |
| concentration    |                    |       |                  |
| concentration at | 0,3 🗸              | 0,3   | 0,4 ratio used ✓ |
| equilibrium      |                    |       |                  |

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} \checkmark$$
$$= \frac{(0,4)^{2}}{(0,3)(0,3)} \checkmark \text{ (positive marking)}$$
$$= 1.78 \checkmark$$

No Kc expression, correct substitution Max 5% Wrong Kc expression Max 3/6

6.6 Lower than ✓ positive marking from QUESTION 6.3.

answer would then be: higher than

6.7

+

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
$$= \frac{(0,38)^{2}}{(0,3)(0,3)} \text{ (re-calculate equilibrium concentrations)}$$

**Note:** may use calculation or use explanation.

= 1,6

The [product] is smaller and the [reactant] is higher at the higher temperature.  $\checkmark$ This results in a lower K<sub>c</sub> value at a higher temperature.  $\checkmark$ Or

Equilibrium is to the left and reverse reaction is favoured.

(6)

(1)

- 7.1 Temperature = 25₀ C / 298 K ✓
   Pressure = 101,3 kPa / 1,013 x 10 ₅/1 atm) ✓
   [Cl-] = 1 mol·dm-3 ✓
- 7.2

7.2.1 Mn  $\rightarrow$  Mn<sub>2+</sub> + 2e-  $\checkmark \checkmark$ 

Marking criteria: $Mn \leftarrow Mn^2 + + 2^{e^-}$  $\begin{pmatrix} 2/2 \\ 2 \end{pmatrix}$  $Mn \leftarrow Mn^{2+} + 2e^- \rightleftharpoons Mn$  $\begin{pmatrix} 1/2 \\ 2 \end{pmatrix}$  $Mn2 + + 2e^- \leftarrow Mn$  $\begin{pmatrix} 0/2 \\ 2 \end{pmatrix}$  $Mn \rightleftharpoons Mn^{2+} + 2e^ \begin{pmatrix} 0/2 \\ 0/2 \end{pmatrix}$ Ignore if charge is omitted on electron.If charge (+) is omitted on Mn2+Max.  $\frac{1}{2}$ 

7.2.2 Mn + Cl<sub>2</sub>  $\rightarrow$  2Cl + Mn<sub>2+</sub>

Marking criteria: ✓ Reactants ✓ Products ✓ Balancing

(3)

(3)

(1)

(1)

7.3  $Mn(s) / Mn_{2+}(aq)(1 \text{ mol} \cdot dm_{-3}) // Cl_2(g)(1 \text{ atm}) / Cl_-(aq)(1 \text{ mol} \cdot dm_{-3}) / Pt$ 

#### NOTE:

Do not penalise if phases and conditions are not included.

- 7.4 MnCl<sub>2</sub> / Mn(NO<sub>3</sub>)<sub>2</sub> / MnSO<sub>4</sub> ✓
- 7.5 <u>Chlorine gas</u> ✓ **OR** Cℓ<sub>2</sub>
- 7.6  $E_{cell}^{\theta} = E_{reduction}^{\theta} E_{oxidation}^{\theta} \checkmark$  $= +1,36 (-1,18) \checkmark$  $= +2,54 \lor \checkmark$

Note: Accept any other correct formula from the data sheet. Any other formula using unconventional abbreviations, e.g.  $E_{cell} = E_{OA} - E_{RA}$ Followed by correct substitutions: Max  $\frac{2}{3}$ 

> (3) **[16]**

(3)

(2)

(2) **[10]** 

#### **QUESTION 8**

| 3.1 | 8.1.1 | P√                                                              |                                                                            |  |
|-----|-------|-----------------------------------------------------------------|----------------------------------------------------------------------------|--|
|     | 8.1.2 | P is connected to the positive terminal o                       | f the battery. ✓                                                           |  |
| 8.2 | 8.2.1 | Ni₂+(aq) ✓ Note: (aq) may be omitted.                           |                                                                            |  |
|     | 8.2.2 | Q✓                                                              |                                                                            |  |
|     | 8.2.3 | Q ✓                                                             |                                                                            |  |
|     | 8.2.4 | Ni <sub>2+</sub> + 2e- $\rightarrow$ Ni $\checkmark \checkmark$ |                                                                            |  |
|     |       | Marking criteria:                                               |                                                                            |  |
|     |       | Ni ← Ni <sup>2+</sup> + 2 <sup>e-</sup>                         | (2/2)                                                                      |  |
|     |       | Ni <sup>2+</sup> + 2e⁻ ⇒ Ni                                     | $ \begin{array}{c} (2/2) \\ (1/2) \\ (0/2) \\ (0/2) \\ (0/2) \end{array} $ |  |
|     |       | $Ni^{2+} + 2e^- \leftarrow Ni$                                  |                                                                            |  |
|     |       | $Ni \rightleftharpoons Ni^{2+} + 2e^{-}$                        |                                                                            |  |
|     |       | Ignore if charge is omitted on electron                         | n.                                                                         |  |
|     |       | If charge (+) is omitted on Ni2+                                | Max. ½                                                                     |  |

8.2.6 For each mole or atom of nickel oxidised at the anode, a mole or atom of nickel is reduced at the cathode. ✓✓
 Or
 Rate of oxidation equals the rate of reduction.

(3)

# **QUESTION 9** A substance that can act as either an acid or a base $\checkmark \checkmark$ 9.1.1 (2)9.1.2 H<sub>2</sub>O ✓ (1) 9.1.3 $n = cV \checkmark$ = (0,05)(0,036) ✓ = 1.8 x 10-3 mol H<sub>2</sub>SO<sub>4</sub> ✓ 1,8 x 10-3 mol H<sub>2</sub>SO<sub>4</sub> neutralised 1,8 x 10-3 mol Na<sub>2</sub>CO<sub>3</sub> in 25 cm<sub>3</sub> + positive marking from QUESTION 9.1.3 (3) 9.1.4 $m = nM \checkmark$ Marking criteria: = 1,8 x 10-3 ✓ x 106 ✓ ✓ formula = 0,1908 g ✓ ✓ ratio of mol ✓ 106 ✓ correct answer Also accept: $\frac{n_{b}}{n_{a}} = \frac{c_{b}V_{b}}{c_{a}V_{a}}$ $\frac{1}{1} = \frac{c_{b} \ 25}{0,05 \ x \ 36}$ $c_{h} = 0.072 \text{ mol} \cdot \text{dm}^{-3}$ $c = \frac{m}{MV}$ $\checkmark$ 0,072 = $\frac{m}{106 \times 0.025}$ $\checkmark$ m = 0,1908 g ✓ (4) 9.1.5 Positive marking from Question 9.1.2 Marking criteria: % Na<sub>2</sub>CO<sub>3</sub> = $\frac{\text{Actual mass}}{\text{Original mass}} \times 100$ ✓ correct calculation of mass ✓ substitution of 5,13 ✓ correct answer = (10)(0,0018)(106) = 1,908 g Na<sub>2</sub>CO<sub>3</sub> ✓ $=\frac{1,908}{5.13}$ $\checkmark$ x 100 = 37,19 % ✓ Or 25 cm<sub>3</sub> has 0,1908 g√ 250 cm<sub>3</sub> has 10√ x 0,1908 g = 1,908 g ✓ % Na<sub>2</sub>CO<sub>3</sub> = $\frac{1,908}{5.13}$ x 100 $\checkmark$ = 37,19 % $\checkmark$

9.2 
$$CO_3^{2^-} + H_2O \rightleftharpoons HCO_3^- + OH^- \checkmark reactants; \checkmark products$$
  
OR  
 $CO_3^{2^-} + 2H_2O \rightleftharpoons H_2CO_3^- + 2OH^-$ 
[15]

| 10.1 | 10.1.1 | Total percentage mass fertiliser in the bag $\checkmark$                                                                                                                                                        | (1)                |
|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|      | 10.1.2 | Nitrogen, ✓ phosphorous ✓ OR potassium (Any two)                                                                                                                                                                | (2)                |
|      | 10.1.3 | % N = $\frac{2}{11} \times 40 \checkmark$<br>= 7,27 % $\checkmark$                                                                                                                                              | (3)                |
| 10.2 | 10.2.1 | Ammonium nitrate or NH₄NO <sub>3</sub> ✓                                                                                                                                                                        | (1)                |
|      | 10.2.2 | Haber process                                                                                                                                                                                                   | (1)                |
|      | 10.2.3 | (NH₄)2SO4 ✓                                                                                                                                                                                                     | (1)                |
|      | 10.2.4 | Ostwald process ✓ OR catalytic oxidation of ammonia                                                                                                                                                             | (1)                |
|      | 10.2.5 | So that plants can absorb them from the soil $\checkmark$                                                                                                                                                       | (1)                |
|      | 10.2.6 | Eutrophication ✓<br>Any given examples that apply to rivers and dams.<br>Note: do not accept red tide.                                                                                                          | (1)                |
|      | 10.2.7 | Nitrogen ✓ and hydrogen ✓                                                                                                                                                                                       | (2)                |
|      | 10.2.8 | Sulphur dioxide 🗸                                                                                                                                                                                               | (1)                |
|      | 10.2.9 | Enhance growth of crops / plants to produce more food for humans ✓<br>Production of fertiliser results in job creation. ✓<br>Selling of fertilisers stimulates the economy. ✓<br>(Any relevant positive impact) | (3)<br><b>[18]</b> |
|      |        | TOTAL:                                                                                                                                                                                                          | 150                |