

education

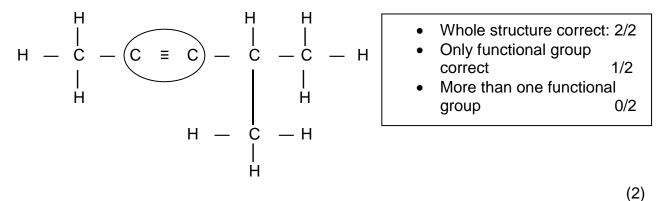
Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS : 150

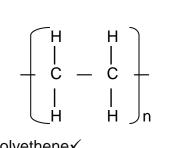
This marking guideline consists of 8 pages.

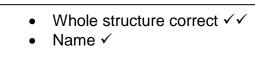

QUESTION 1

1.1	$D\checkmark\checkmark$	(2)
1.2	C√√	(2)
1.3	A√✓	(2)
1.4	C√√	(2)
1.5	D√✓	(2)
1.6	D√√	(2)
1.7	D√√	(2)
1.8	C√√	(2)
1.9	C√√	(2)
1.10	B√√	(2) [20]

QUESTION 2

2.1.1	hexan-3-one 🗸 🗸	(2)
2.1.2	carboxyl (group) ✓	(1)


2.1.3



2.1.4 addition polymerisation√

polyethene√

2.1.5

(3)

(1)

3

NSC-Memorandum

	G√	(1)
2.2.1	esters/alkyl alkanoate√	(1)
2.2.2	ethyl√ propanoate√	(2)
2.2.3		
	$H = \begin{pmatrix} H & H & H \\ - & C & - & C \\ H & H \end{pmatrix} = \begin{pmatrix} 0 & - & H \\ - & C & - & 0 \end{pmatrix} = \begin{pmatrix} H & - & H \\ - & C & - & 0 \end{pmatrix}$	
	 Whole structure correct: 2/2 Only functional group correct 1/2 More than one functional group 0/2 	(2)
2.2.4	acts as a catalyst/speeds up the reaction. \checkmark or	
	acts as a dehydrating agent. ✓	(1)
2.3.1	Compounds that have the same molecular formula but different functional groups $\checkmark \checkmark$	(2)
~ ~ ~		
2.3.2	pentanoic acid√	(2) [20]
	STION 3	
QUE	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed	[20]
QUE 3.1 3.2.1	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. $\checkmark \checkmark$ (2 or 0)	(2)
QUE 3.1 3.2.1 3.2.2	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. ✓✓ (2 or 0) length of carbon chain/surface area/branching✓	(2) (1)
QUE 3.1 3.2.1 3.2.2 3.3.1	STION 3 the pressure exerted by a vapour at equilibrium with its liquid in a closed system. $\checkmark \checkmark$ (2 or 0) length of carbon chain/surface area/branching \checkmark number of carbon atoms/molecular mass \checkmark	(2) (1) (1)

QUESTION 4

4.1.1 warm/mild heat ✓ dilute KOH ✓ /warm ✓ dilute strong base ✓	(2)	
4.1.2 hot KOH✓ concentrated ✓ Base(KOH)	(2)	
4.2 substitution ✓	(1)	
4.3 $\begin{array}{cccccccccc} H & H & H & H & H & H & H & H & H & H $		
 ✓ left hand side ✓✓ for organic product ✓ balancing 	(4)	
4.4 unsaturated ✓ contains a double bond/multiple bond ✓ between atoms of carbon ✓	(3)	
4.5 hydration ✓ ✓	(2) [14]	
QUESTION 5		

5.1 calcium carbonate \checkmark there is some unreacted CaCO₃ at the end of the reaction (time 60s) \checkmark

5.2.1 **ANY ONE**

- <u>The change in concentration</u> ✓ of <u>reactants/products per unit time</u>. ✓
- Rate of change in concentration of reactants or products. ✓✓
- Change in amount/number of moles/volume/mass of reactants/products per (unit) time.
- Amount/number of moles/volume/mass of products formed OR reactants used per (unit) time. (2)

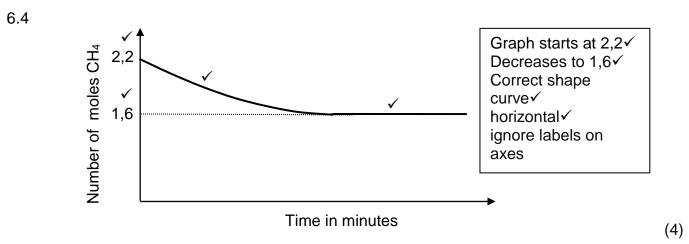
5.2.2 rate =
$$-\frac{\text{change in mass of CaCO}_3}{\Delta t} \checkmark$$

 $1,07 = -\frac{54 - X}{30 - 0} \checkmark$
= 86,10 g \checkmark
(if answer is negative minus
1 mark)
Marking criteria
• Equation \checkmark (accept if negative sign is omitted)
• Substitute 54 - X in equation \checkmark
• Substitute 30 - 0 in equation \checkmark
• Substitute 1,07 \checkmark for rate
• Final answer: X = 86,10 g \checkmark
(5)

(2)

5.4	A decrease in concentration of reactants <u>decreases the number of molecules per volume</u> . ✓ Fewer number of collisions per unit time ✓ A <u>fewer number of effective collisions occur per unit time/lower frequency of</u> <u>effective collisions</u> . ✓	unit (3)
5.5	REMAINS THE SAME✓	(1) [14]
QUES	STION 6	[]
6.1	When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. $\checkmark\checkmark$ (2 or 0)	(2)
6.2	the reaction has reached a state of (dynamic) equilibrium/the rate of the forward reaction is equal to the rate of the reverse reaction. $\checkmark \checkmark$ (2 or 0)	(2)
6.3	 Marking criteria: Indicating that the number of mols of CO equilibrium is 0,6√ Correct mol ratio√ Calculating the quantity(mol) at equilibrium of all three substances √ Substitute V = 2 dm³ in c = ⁿ/_n to determine concentration at equilibrium of all the 	

Substitute V = 2 dm³ in c = $\frac{1}{V}$ to determine concentration at equilibrium of all the substances.√


- K_c expression \checkmark Substitution of concentrations in K_c expression \checkmark • •
- Final answer: 0,456 √ •

No K_c expression, correct substitution: Max. $\frac{6}{7}$

 $\frac{4}{7}$ Wrong K_c expression : Max.

	CH ₄	H ₂ O	CO	H ₂]
Initial quantity(mol)	2,2	1,8	0	0	
Change(mol)	-0,6	-0,6	+0,6	+ 1,8	Ratio ✓
Quantity at equilibrium(mol)	1,6	1,2	0,6√	1,8	
Equilibrium concentration(mol.dm ⁻³)	0,8	0,6	0,3	0,9	Divide by 2✓

$$K_{c} = \frac{[CO] [H_{2}]^{3}}{[CH_{4}] [H_{2}O]} \checkmark = \frac{(0,3) (0,9)^{3}}{(0,8) (0,6)} \checkmark = 0,456 \checkmark$$
(7)

- 6.5.1 INCREASES√
 (1)

 6.5.2 REMAINS THE SAME√
 (1)
- 6.6 An increase in the number of moles of CH₄ increases the concentration of CH₄(reactant).
 According to Le Chateliers Principle an increase in the concentration of the reactants ✓ favours the reaction that decreases the concentration of the reactants ✓ In this case the forward reaction is favoured ✓

QUESTION 7

- 7.1.1 An acid is a substance that produces hydrogen ions(H⁺)/hydronium ions(H₃O⁺) \checkmark (2)
- 7.1.2 strong√

it ionises completely in water
$$\checkmark$$
 (ACCEPT: dissociates) (3)
7.2.1

$$pH = -\log [H_3O^+] \checkmark$$

$$0,65\checkmark = -\log [H_3O^+]$$

$$\therefore [H_3O^+] = 0,224 \text{ mol.dm}^{-3}$$

$$c((H_2SO_4) = \frac{1}{2}c(H_3O^+)]\checkmark$$

$$= \frac{1}{2}(0,224) \int_{=}^{1} \frac{1}{2}(0,24) \int_{=}^{1} \frac{1}{2}(0,24) \int_{=}^{1} \frac{1}{2}(0,$$

(3) [**20**] •

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1: concentration of H₂SO₄

Formulae:
$$c = \frac{n}{V}/n = cV/\sqrt{V}$$

- Calculate initial number of moles of H₂SO₄√
- Calculate number of moles of H₂SO₄ that reacted ✓
- Calculate number of moles of H₂SO₄ in excess√
- Calculate number of moles of NaOH that reacted√
- Ratio of NaOH to H₂SO₄✓
- Final answer cm³ or dm³√ •

=	cV✓ (0,25)(0,024) ✓ 6 x 10 ⁻³ mols
n(H₂SO₄)excess = =	cV (0,112)(<u>X + 24</u>) 1000
n(H ₂ SO ₄)reacted =	6×10^{-3} - $\frac{(0,112)(X+24)}{1000}$ \checkmark
n(NaOH)reacted =	cV 0,15(<u>X</u>) ✓ 1000
n(NaOH)reacted	= 2 (n(H₂SO₄)reacted)✓
$ \begin{array}{rcl} 0,15(\underline{X}) &= 2 \\ 1000 & X &= \end{array} $	((6 x 10 ⁻³ - ^{(0,112)(<u>X + 24</u>) 1000) 17,71 cm³✓ 0,01771 dm³ (7) [16]}

QUESTION 8

8.1 a solution/liquid/dissolved substance </ that conducts electricity through the movement of ions.✓

8.2
$$\underline{Zn(s)} \rightarrow \underline{Zn^{2+}(aq) + 2e^{-}}$$

Notes Notes

 $Zn^{2+} + 2e^{-} \rightleftharpoons Zn \qquad \begin{pmatrix} 0/2 \end{pmatrix}$ $Zn^{2+} + 2e \rightarrow Zn \qquad \begin{pmatrix} 0/2 \end{pmatrix}$ $\binom{2}{2}$ $Zn^{2+} + 2e^{-} \leftarrow Zn$ $(\frac{1}{2})$ $Zn \rightleftharpoons Zn^{2+} + 2e^{-}$ Ignore if charge on electron is omitted. • Max.: $\frac{1}{2}$ If a charge of an ion is omitted e.g. $Zn \rightarrow Zn^2 + 2e^{-1}$ (2)

(2)

(2)

8.3.2
$$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{andod} \checkmark$$

 $0.63\checkmark = E^{0}_{cathode} - (-0.76)\checkmark$
 $E^{0}_{cathode} = -0.13 \lor \checkmark$
X is lead(Pb) \checkmark
X is lead(Pb) \checkmark
 X is lead(Pb) \land
 X is lead

•

Mass P = $31\sqrt{149}\sqrt{x11,95}\sqrt{2}$ = 2,486 kg

 $2/8 \times Z/100 \times 20 = 2,486$

Z = 49,72%√

Marking rule 6.3.10.

10.2

(6) **TOTAL MARKS: 150**