

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2020

PHYSICAL SCIENCES P2 (CHEMISTRY)

MARKS: 150

TIME: 3 hours

This question paper consists of 16 pages including 2 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your full NAME and SURNAME in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, et cetera where required
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1-1.10) in the ANSWER BOOK, for example 1.11 D.

- 1.1 Which ONE of the following factors will increase the rate of a chemical reaction by offering an alternative path of lower activation energy?
 - A Pressure
 - B Temperature
 - C Surface area
 - D Positive catalyst
- 1.2 Structural isomers always have the same ...
 - A carbon chain.
 - B functional group.
 - C molecular formula.
 - D physical properties.
- 1.3 Which ONE of the following has the HIGHEST vapour pressure?
 - A Pentane
 - B Hexane
 - C Heptane
 - D Octane
- 1.4 Which ONE of the following is the structural formula for the functional group of ethanoic acid?

A	О Н —С— О—Н	В	— О — Н	
с	 	D	о II —С—Н	(2)

3

(2)

(2)

- 1.5 Consider the chemical reaction given below:
 - **X** + concentrated $H_2SO_4 \longrightarrow CH_3CHCHCH_3 + H_2O$

Which ONE of the following is CORRECT about reactant X?

Reactant X is a ...

- A tertiary alcohol.
- B primary alcohol.
- C secondary alcohol.
- D primary haloalkane.

- (2)
- 1.6 The potential energy diagram shown below is for the hypothetical reversible reaction shown below.

 $X_2(g) \rightleftharpoons Y_2(g)$

Course of reaction

The value of ΔH (in kJ/mol) for the catalysed forward reaction is equal to ...

- A 23 B -23
- C 58
- D -58

1.7 The reaction represented by the balanced equation below reaches equilibrium in a closed container.

$$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$

More C(s) and $CO_2(g)$ are added to the container at constant temperature.

How will the number of moles of CO(g) and the value of K_c be affected at equilibrium?

	NUMBER OF MOLES OF CO	Kc
А	Increases	Increases
В	Increases	Remains constant
С	Remains the same	Remains the same
D	Remains the same	Increases

(2)

1.8 The relationship between [H₃O⁺] and [OH⁻] in an aqueous solution at constant temperature is best represented by ...

1.9	Gaseous chlorine (Cl ₂), used to disinfect water in public swimming pools
	reacts with water according to the following balanced equation.

$$C\ell_2 + H_2O \rightarrow HOC\ell + HC\ell$$

PHYSICAL SCIENCES P2

The addition of chlorine changes the pH of water in swimming pools.

Which ONE of the following substances must be added to public swimming pools periodically to increase the pH?

A KCł

6

- B NH₄Cℓ
- C H₂SO₄
- D Na₂CO₃

(2)

(EC/SEPTEMBER 2020)

1.10 Consider the reaction in which magnesium powder reacts with EXCESS 50 cm³ of a 0,1 mol·dm⁻³ of sulphuric acid solution.

 $Mg(s) + H_2SO_4(aq) \longrightarrow MgCl_2(aq) + H_2(g) \Delta H < 0$

Which ONE of the following changes will increase the rate of production of hydrogen gas?

- A Increase in pressure.
- B Heating the reaction mixture.
- C Using 100 cm³ of the same acid solution.
- D Adding water to the reaction mixture.

(2) [**20**]

QUESTION 2 (Start on a new page.)

Consider compound ${\bf A}$ which is a member of homologous series of saturated hydrocarbons.

- 2.1Define the term *homologous series.*(2)
- 2.2 Give a reason why compound **A** is classified as a hydrocarbon. (2)
- 2.3 For compound **A** write down the:
 - 2.3.1 General formula of the homologous series to which it belongs (1)

0

- 2.3.2 IUPAC name
- 2.4 Consider compounds **P** and **Q** shown below:
 - **P**: 2-methyl-2-propanol **Q**: $(CH_3)_2CH C H_1$

Write down the:

	2.4.1	Structural formula of compound P	(2)	
	2.4.2	IUPAC name of a FUNCTIONAL isomer of compound ${f Q}$	(2)	
	2.4.3	Give a reason why compound Q CANNOT have a POSITIONAL isomer.	(1)	
2.5	5 Polyethene is produced when many ethene <u>monomer units join together</u> to form a polymer according to the equation:			
		$n CH_2 \longrightarrow CH_2 \longrightarrow Polyethene$		
	2.5.1	Write down the type of reaction described by the underlined phrase.	(1)	
	2.5.2	Give a reason why polyethene is regarded as saturated.	(1)	
	2.5.3	Name ONE use of polyethene.	(1)	

(1) [**16]**

7

(3)

(2)

QUESTION 3 (Start on a new page.)

The boiling points shown in the table were obtained during an investigation into the boiling points of compounds A, B and C. The compounds have a comparable molecular mass.

Co	ompound	Boiling point (°C)
Α	Hexane	68
B Pentanal		103
С	Pentan-2-ol	119

- 3.1 Define the term *boiling point*.
- 3.2 Give a reason why the compounds used in the investigation must have a comparable molecular mass. (1)
- 3.3 Explain the difference in boiling points of compound **A** and **B** by referring to the TYPE and STRENGTH of intermolecular forces and energy involved. (4)
- 3.4 How will the vapour pressure of a CHAIN isomer of compound **C** compare to that of compound **C**?

Write down only HIGHER THAN, LOWER THAN or SAME AS. (1)

- 3.5 Explain the answer in QUESTION 3.4 by referring to MOLECULAR STRUCTURE and TYPE of INTERMOLECULAR FORCES. (3)
- Using MOLECULAR FORMULAE write down a balanced equation for the complete combustion of hexane.
 (3)
 [14]

QUESTION 4 (Start on a new page.)

Consider the THREE incomplete organic reactions below.

	I:	2-bromobutane + dilute NaOH →	
	II:	Compound P + H ₂ \longrightarrow CH ₃ CH(CH ₃)CH ₃	
	III:	CH ₃ CH ₂ CH ₂ COOH + CH ₃ CH ₂ CH ₂ OH → Ester + Q	
4.1	For rea	action I write down the:	
	4.1.1	Type of reaction taking place	(1)
	4.1.2	IUPAC name of the organic product formed	(2)
	The di hydro>	lute sodium hydroxide in reaction I is replaced with concentrated sodium kide and the reaction mixture is strongly heated.	
4.2	Write conce FORM (Ignore	down a balanced equation for the reaction taking place when ntrated sodium hydroxide is used in reaction I using STRUCTURAL IULAE. e the MINOR product.)	(6)
4.3	For rea	action II write down the:	
	4.3.1	Name of the type of addition reaction taking place	(1)
	4.3.2	Name of the catalyst used	(1)
	4.3.3	Structural formula for compound P	(2)
4.4	Consid	der reaction III.	
	Write	down:	
	4.4.1	The name of the type of reaction taking place	(1)
	4.4.2	ONE reaction condition	(1)
	4.4.3	Name or formula of inorganic product Q	(1)
	4.4.4	The structural formula and IUPAC name of the ester produced	(4) [20]

QUESTION 5 (Start on a new page.)

A factor influencing the rate of a chemical reaction is investigated by carrying out two experiments **1** and **2** in which the following reaction takes place.

$$CaCO_3(s) + 2 HC\ell(aq) \rightarrow CaC\ell_2(aq) + H_2O(\ell) + CO_2(q)$$

In both experiments chunks of pure calcium carbonate $(CaCO_3)$ of the same mass are added to EXCESS hydrochloric acid solution $(HC\ell)$ in OPEN flasks. One reaction condition is changed in experiment **2**.

Each flask is placed on a mass scale as shown in the diagram below.

The graph below shows the changes in mass of the beaker and its contents during the reaction in experiments **1** and **2**.

5.1 Define *reaction rate* in words.

- 5.2 Write down the FORMULA or NAME of the substance responsible for the decrease in mass of the beaker and its contents as the reaction proceeds. (1)
- 5.3 Write down ONE other apparatus needed to measure the rate of reaction besides the scale balance for the above experiments. (1)
- 5.4 Calculate the average rate of reaction in $g \cdot min^{-1}$ for experiment **2**. (3)
- 5.5 Calculate the mass of calcium carbonate that was used in experiment **1**. (6)

5.6 The Maxwel-Boltzman distribution curves for the reaction in experiments **1** and **2** are given below.

Kinetic energy

5.8	Give a	reason for the answer in QUESTION 5.7.3 above.	(2) [24]
	5.7.3	Amount of CO ₂ that is produced.	(1)
	5.7.2	Time for the reaction taken to reach completion.	(1)
	Write	down LOWER THAN or HIGHER THAN or EQUAL TO.	
	How d	o the following quantities in experiment 3 compare to experiment 1 ?	
	5.7.1	Write down an investigative question for the second investigation, in which experiment 3 is compared to experiment 1 .	(2)
5.7	In a se which remair	econd investigation a third experiment (experiment 3), is carried out in HCt of HIGHER CONCENTRATION is used. All the other conditions in the same in experiment 3 as in experiment 1 .	
	5.6.3	Explain the answer to QUESTION 5.6.2 by referring to the collision theory.	(3)
	5.6.2	Which curve (A or B) represents the reaction in experiment 2 ?	(1)
	5.6.1	Which factor affecting reaction rate is investigated?	(1)

QUESTION 6 (Start on a new page.)

Consider the reversible reaction taking place in a closed container:

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

6.1 Define the term *reversible reaction*.

The graph below shows the changes in the amount of the substances H_2 , I_2 and HI from the moment the reactants are pumped into an empty container.

GRAPH OF AMOUNT OF SUBSTANCE VERSUS TIME

- 6.2 Which reaction (FORWARD or REVERSE) has a HIGHER rate of reaction during the interval **t**₀ to **t**₁? (1)
- 6.3 Did the chemical reaction stop during the interval t_2 to t_3 ?

Write only YES or NO.

Give a reason for the answer.

(3)

At time t_3 the pressure on the equilibrium system is increased by decreasing the volume at constant temperature.

6.4 How will the increase in pressure affect the following?

Write down only INCREASES, DECREASES or REMAINS THE SAME.

6.4.1	Rate of reaction.	(1)
6.4.2	Number of moles of HI.	(1)
6.4.3	Concentration of HI.	(1)

- 6.5 Explain the answer to QUESTION 6.4.3 above.
- 6.6 The table below shows the equilibrium constants, K_c values for the reaction at different temperatures.

TEMPERATURE (°C)	Kc
448	50,3
227	129

6.6.1 Is there a HIGH or LOW YIELD at 227 °C?

Give a reason for the answer.

6.6.2 Is the forward reaction EXOTHERMIC or ENDOTHERMIC?

Explain the answer by referring to Le Chatelier's principle. (4)

6.7 The reaction is started by placing hydrogen gas (H_2) and iodine gas (I_2) into an empty 0,5 dm³ container which is then sealed and heated.

When the reaction reaches **equilibrium** at 448 $^{\circ}$ C it is found that the concentration of H₂ and I₂ are 0,46 mol.dm⁻³ and 0,39 mol.dm⁻³ respectively.

The value of the equilibrium constant, Kc is equal to 50,3 at 448 °C.

Calculate the:

6.7.1	Concentration of HI at equilibrium	(4)
6.7.2	Percentage yield at 448 °C	(7) [28]

(2)

QUESTION 7 (Start on a new page.)

7.1 Study the following reactions which show the step-by-step ionisation reaction of phosphoric acid (H₃PO₄).

Ι	H ₃ PO ₄ + H ₂ O	\rightleftharpoons	$H_2PO_4 + H_3O^+$	Ka = 7,5 × 10 ⁻³	
II	$H_2PO_4^- + H_2O$	\rightleftharpoons	$HPO_4^2 - + H_3O^+$	Ka = $1,3 \times 10^{-12}$	
7.1.1	Define an <i>acid</i>	accord	ing to Lowry-Brons	sted model.	(2)
7.1.2	Write down the reaction I and I	formul I.	la of the substance	e that acts as an ampholyte in	(1)
7.1.3	Give a reason f	or the	answer in QUEST	ON 7.1.2 above.	(2)
7.1.4	Which substant	ce, H ₂ F	PO4 ⁻ or HPO4 ² -, w	ill have a HIGHER K♭ value?	
	Give a reason f	or you	r answer.		(3)
Cons equat	ider the hydrolys ion below.	is of t	he ion C_2HO_4 r	epresented by the balanced	
	C ₂ HO ₄	(aq)	+ H ₂ O(ℓ) ⇒	C2H2O4 + OH	

- 7.2.1 Define the term *hydrolysis.* (2)
- 7.2.2 Write down the conjugate base of $C_2H_2O_4$. (2)
- 7.2.3 Give a reason by referring to substance(s) in the equation why the hydrolysis of $C_2HO_4^-$ produces an ALKALINE solution? (2)
- 7.3 A group of learners perform a titration to determine **x** number of moles of water of crystallisation in hydrated oxalic acid $(C_2O_4H_2 \cdot \mathbf{x} H_2O)$.

They first prepared a solution of hydrated oxalic acid, by adding 7,56 grams of hydrated oxalic acid to water and made a volume of 250 cm³ solution.

During a titration 25 cm³ of the solution of hydrated oxalic acid is neutralised by exactly 24 cm³ of a 0,5 mol·dm⁻³ solution of sodium hydroxide according to the balanced equation:

 $C_2O_4H_2$. **x** $H_2O(s)$ + 2 NaOH(aq) \longrightarrow $C_2O_4Na_2(aq)$ + (**x**+2) $H_2O(\ell)$

(Water of crystallisation does not react with the base.)

7.3.1	Define a <i>strong</i> base.	(2)
7.3.2	Calculate the pH of the 0,5 mol·dm ⁻³ sodium hydroxide solution.	(5)
7.3.3	Determine the value of \mathbf{x} by calculation.	(7) [28]

7.2

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAAM/NAME	SIMBOOL/SYMBOL	WAARDE/VALUE			
Standaarddruk					
Standard pressure	p^{θ}	1,013 × 10⁵ Pa			
Molêre gasvolume teen STD					
Molar gas volume at STP	Vm	22,4 dm ^{3.} mol ⁻¹			
Standaardtemperatuur					
Standard temperature	Τ ^θ	273 K			
Lading op electron					
Charge on electron	е	-1,6 × 10 ⁻¹⁹ C			
Avogadro se konstante					
Avogadro's constant	NA	6,02 × 10 ²³ mol ⁻¹			

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M} \text{ or/of}$	$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	pH= -log[H ₃ O ⁺] K _w = [H ₃ O ⁺][OH ⁻] = 1x10 ⁻¹⁴ at /by 298K							
$n = \frac{N}{N_A}$ or/of $n = \frac{V}{V_m}$	$\frac{c_a v_a}{c_b V_b} = \frac{n_a}{n_b}$								
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$									
$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} / E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$									
$E^{\theta}_{cell} = E^{\theta}_{oxidising agent} - E^{\theta}_{reducing agent} / E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$									

1 (I)	2 (II)	3	4	5 KEV/	6 SI EUTE	7	8 Atoor	9 ngetal	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
1 ←H ∾1					SELUTE		Atomic 2	number 9	•								2 He 4
3 oLi ~7	4 Be 9		Electronegativiteit Electronegativity Electronegativity Cu 63,5 Symbol Symbol Symbol Symbol Symbol Symbol											9 0,F *19	10 Ne 20		
11 గ్రా ల్23	12 ∾Mg ∽24		Image: Second stateImage: Second											17 oCl ^{rr} 35,5	18 Ar 40		
19 ∞K ⊙39	20 ⊙Ca ∽40	21 ოSc 〒45	22 ۲iΩTi 148	23 بوV 51	24 Cr 52	25 Mn √55	26 ∞Fe √ 56	27 ∞Co √59	28 ∞Ni 59	29 ឆCu ∽63,5	30 ∞Zn ∽65	31 ∞Ga ∽70	32 ∞Ge √ 73	33 •As •i75	34 ∢Se ∾79	35 ∞Br ∾80	36 Kr 84
37 ∞Rb 086	38 ⊙Sr ~88	39 ∾Y ~89	40 ∢ Zr ∽91	41 Nb 92	42 ∞Mo ∽96	43 مTc ح	44 ∾Ru ∾101	45 ∾Rh ∾103	46 ∾Pd ∾106	47 مAg 108	48 ⊷Cd ∽112	49 ⊾In ∵115	50 ∞Sn √119	51 ൭Sb ∽122	52 ←Te ∾128	53 اما ∾127	54 Xe 131
55 Cs 0133	56 ఈ Ba ల్137	57 La 139	72 Hf ب 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ∞ ^{Tℓ} ~ 204	82 ∞Pb √ 207	83 ₀ ^{Bi} √209	84 0 ^{P0} vi	85 ທ ^{At} ຕ່	86 Rn
87 ∠'0	88 Ra 0 226	89 Ac		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 Dv	67 Ho	68 Er	69 Tm	70 Vb	71
	1	1	1	140 90	141 91	144 92	93	150 94	152 95	157 96	159	163 98	165 99	167	169	173	175
				Th 232	Ра	U 238	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

(EC/SEPTEMBER 2020)

PHYSICAL SCIENCES P2

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

Copyright reserved

16