

MARKS: 75

TIME: $1\frac{1}{2}$ hours

This question paper consists of 6 pages and 2 Diagram Sheets.

7.

GRADE 11-NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.

Diagrams are NOT necessarily drawn to scale.

Write neatly and legibly.

8. Diagrams for QUESTION 4.1, QUESTION 4.2, QUESTION 5.1 and QUESTION 5.2

9. on the DIAGRAM SHEETS provided.Detach the DIAGRAM SHEETS and hand in together with your Answer Book.

GRADE 11-NSC

QUESTION 1

1.1 Solve for *x*:

1.1.1	$7x^2 - 2x - 3 = 0$ (correct to TWO decimal places)	(3)

1.1.2 $(x-2)^2 - 4 = 0$ (3)

1.1.3
$$\sqrt{7x+2} + 2x = 0$$
 (4)

 $1.1.4 \qquad x^2 - x - 56 < 0 \tag{3}$

1.2 Solve for x and y simultaneously: 2x + y = 1 and $2x^2 - xy + y^2 = 4$ (6) [19]

QUESTION 2

		3	
2.1	Solve for x without the use of a calculator :	$x^{\overline{4}} = 64$	(2)

2.2 Simplify without the use of a calculator :

2.2.1
$$\frac{5^{-x}.125^{1-x}.25^{2x}}{5}$$
 (3)

2.2.2
$$\sqrt{12} - \sqrt{147} + 3^{1,5}$$
 (3)

2.3 If
$$\frac{5^{2006} - 5^{2004} + 24}{5^{2004} + 1} = a$$
, calculate *a* without the use of a calculator. (3)
[11]

QUESTION 3

ANSWER QUESTION 3 WITHOUT USING A CALCULATOR.

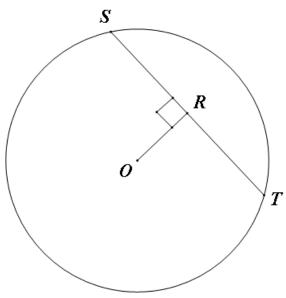
- 3.1 Given: $\tan \theta = -\frac{9}{40}$ and $180^{\circ} < \theta < 360^{\circ}$. Use a sketch to determine the value of $\sin \theta + \cos \theta$. (4)
- 3.2 Simplify fully:

$$\frac{\sin(90^\circ - \theta) \cdot \tan(360^\circ - \theta) \cdot \sin(\theta - 180^\circ)}{1 - \cos^2 \theta} \tag{6}$$

[15]

GRADE 11-NSC

3.3 Determine the value of the following in terms of p, if $\cos 32^\circ = p$:

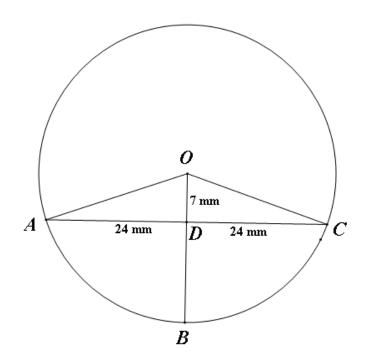

$$3.3.1 \quad \cos 212^{\circ}$$
 (2)

$$3.3.2 \quad \sin(-328^{\circ})$$
 (3)

GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 4 AND 5.

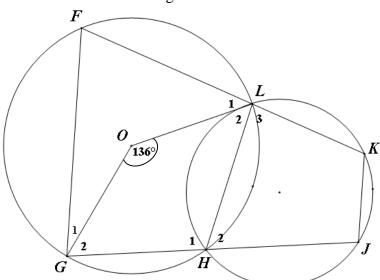
QUESTION 4

4.1 In the diagram, O is the centre of the circle and R is a point on chord ST, such that OR is perpendicular to ST.



Prove the theorem which states that SR = RT.

(5)

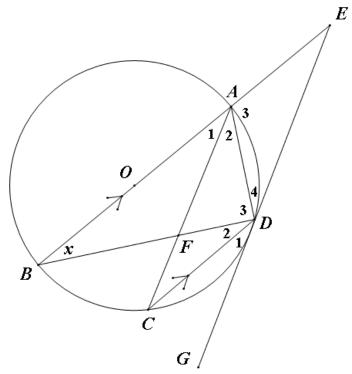

4.2 In the diagram, O is the centre of the circle and D is a point on chord AC such that AD = DC = 24 mm. OD is drawn and produced to meet the circle at B. OD = 7 mm. OA and OC are drawn.

Calculate the length of BD.

QUESTION 5

5.1 In the diagram two circles intersect at L and H. O is the centre of the circle passing through F, G, H and L. GO and LO are drawn. LHJK is a cyclic quadrilateral. FLK and GHJ are straight lines. $\hat{GOL} = 136^{\circ}$

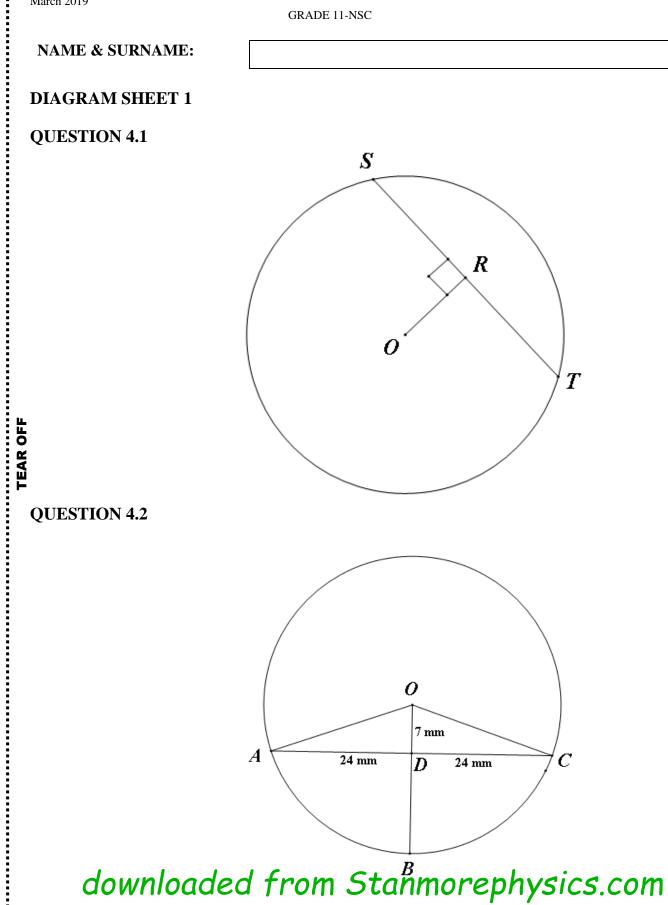
5.1.1 Calculate the size of \hat{F} .


(2)

(5) [10]

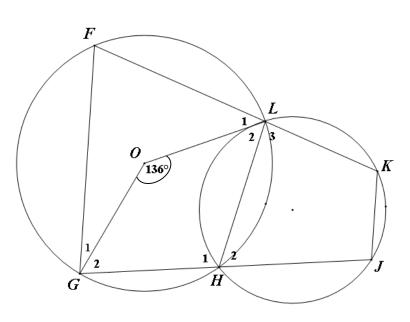
(4)

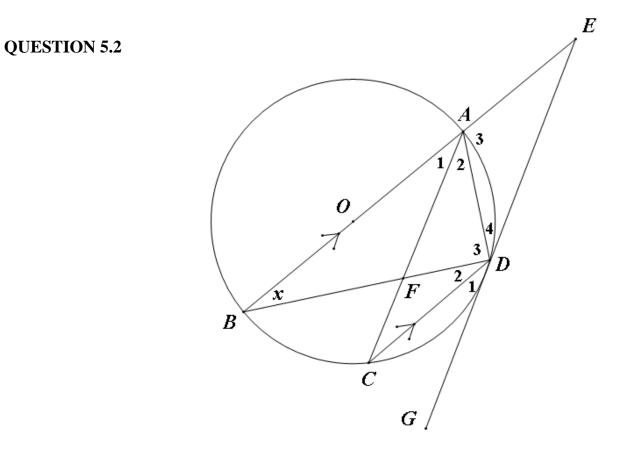
GRADE 11-NSC


5.2 In the diagram, O is the centre of the circle. Diameter BOA is produced to E such that EDG is a tangent to the circle at D. C is a point on the circle such that BA || CD. AD, BD and AC are drawn. F is a point of intersection of AC and BD. Let $\hat{B} = x$.

		[20]
5.2.3	Prove that CA is a tangent to the circle passing through A, D and E.	(4)
5.2.2	Determine the size of \hat{E} in terms of x.	(4)
5.2.1	Write down, with reasons, four other angles each equal to x .	(6)

TOTAL: 75


10


GRADE 11-NSC

NAME & SURNAME:

DIAGRAM SHEET 2

QUESTION 5.1

education

Department: Education PROVINCE OF KWAZULU-NATAL

MATHEMATICS

COMMON TEST

MARCH 2019

MARKING GUIDELINES

NATIONAL SENIOR CERTIFICATE

GRADE 11

downloaded from Stanmorephysics.com

MARKS: '

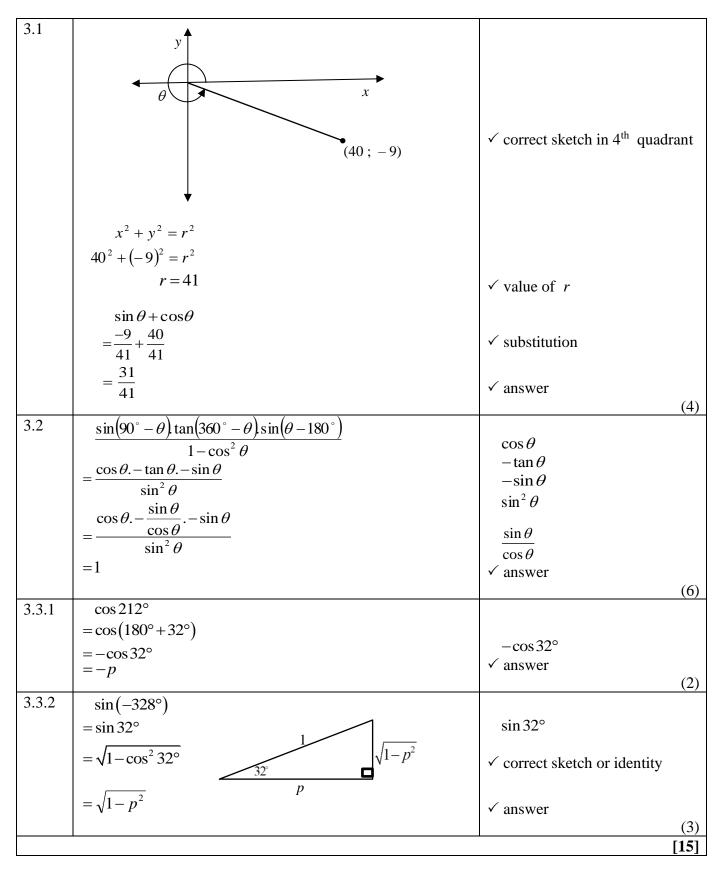
These marking guideline consists of 8 pages.

GEOMETRY • <i>MEETKUNDE</i>		
S	A mark for a correct statement (A statement mark is independent of a reason)	
3	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)	
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)	
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)	
S/R	Award a mark if statement AND reason are both correct	
5/K	Ken 'n punt toe as die bewering EN rede beide korrek is	

1.1.1	$7x^{2} - 2x - 3 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(7)(-3)}}{2(7)}$ $x = -0,53 \text{ or } x = 0,81$	 ✓ substituting in correct formula ✓ x-values ✓ x-values (3)
1.1.2	$(x-2)^{2} - 4 = 0$ $(x-2)^{2} = 4$ $x - 2 = \pm 2$ x = 4 or x = 0 OR	✓ isolate $(x - 2)^2$ ✓ ±2 ✓ both answers OR
	$(x-2)^{2} - 4 = 0$ $x^{2} - 4x + 4 - 4 = 0$ $x^{2} - 4x = 0$ x (x-4) = 0 x = 4 or x = 0	✓ $x^2 - 4x + 4$ ✓ factors ✓ both answers (3)
1.1.3	$\sqrt{7x + 2} + 2x = 0$ $(\sqrt{7x + 2})^2 = (-2x)^2$ $7x + 2 = 4x^2$ $4x^2 - 7x - 2 = 0$ (4x + 1)(x - 2) = 0 $x = -\frac{1}{4} \text{ or } x = 2$ $\therefore x = -\frac{1}{4} \text{ only}$	✓ isolate $\sqrt{7x + 2}$ ✓ standard form ✓ factors ✓ correct solution (4)

3 GRADE 11-Marking Guideline

114		
1.1.4	$\begin{array}{l} x^2 - x - 56 < 0\\ (x - 8)(x + 7) < 0 \end{array}$	✓ correct factors
	CV $x = 8 \text{ or } x = -7$	
	+ $ +$ $ +$ $-$	
	-7 < x < 8	$\checkmark \checkmark$ correct solution (3)
1.2	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$	
	y = 1 - 2x	y=1-2x
	$2x^2 - x(1 - 2x) + (1 - 2x)^2 = 4$	✓ substitution
	$2x^2 - x + 2x^2 + 1 - 4x + 4x^2 = 4$	
	$8x^{2} - 5x - 3 = 0$ (8x + 2)(x - 1) = 0	 ✓ standard form ✓ factors
	(8x+3)(x-1) = 0	v Tactors
	$x = -\frac{3}{8}$ or $x = 1$	$\checkmark x$ values
	$y = 1 - 2\left(-\frac{3}{8}\right)$ or $y = 1 - 2(1)$	
	$y = 1\frac{3}{4}$ or $y = -1$	$\checkmark y$ values (6)
	OR	OR
	OR $2x + y = 1$ and $2x^2 - xy + y^2 = 4$	OR
	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$ $x = \frac{1 - y}{2}$	OR $x = \frac{1 - y}{2}$
	$2x + y = 1$ and $2x^2 - xy + y^2 = 4$	
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$ \$\substitution\$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$ \$\substitution\$ \$\substitution\$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$ $1 - 2y + y^{2} - y + y^{2} + 2y^{2} - 8 = 0$ $4y^{2} - 3y - 7 = 0$ $(4y - 7)(y + 1) = 0$ $y = 1\frac{3}{4} \text{ or } y = -1$	$x = \frac{1 - y}{2}$ \checkmark substitution \checkmark standard form \checkmark factors
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$ $1 - 2y + y^{2} - y + y^{2} + 2y^{2} - 8 = 0$ $4y^{2} - 3y - 7 = 0$ $(4y - 7)(y + 1) = 0$ $y = 1\frac{3}{4} \text{ or } y = -1$	$x = \frac{1 - y}{2}$ $\checkmark \text{ substitution}$ $\checkmark \text{ standard form}$ $\checkmark \text{ factors}$ $\checkmark y \text{ values}$
	$2x + y = 1 \text{ and } 2x^{2} - xy + y^{2} = 4$ $x = \frac{1 - y}{2}$ $2\left(\frac{1 - y}{2}\right)^{2} - y\left(\frac{1 - y}{2}\right) + y^{2} = 4$ $2\left(\frac{1 - 2y + y^{2}}{4}\right) - y\left(\frac{1 - y}{2}\right) + y^{2} - 4 = 0$	$x = \frac{1 - y}{2}$ $\checkmark \text{ substitution}$ $\checkmark \text{ standard form}$ $\checkmark \text{ factors}$


downloaded from Stanmorephysics.com

Please turn over

2.1	$x^{\frac{3}{4}} = 64$	
	$\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}} = (2^6)^{\frac{4}{3}}$	\checkmark raising both sides to the $\frac{4}{3}$
	$x = 256 \text{ or } 2^8$	✓ answer (2)
2.2.1	$\frac{5^{-x}.125^{1-x}.25^{2x}}{5}$	
	$=\frac{5^{-x}.(5^3)^{1-x}.(5^2)^{2x}}{5}$	\checkmark rewriting as base 3
	$=\frac{5^{-x}.5^{3-3x}.5^{4x}}{5}$ = 5 ^{-x+3-3x+4x-1} = 5 ²	✓ using exponential rules
	=5 ⁻ =25	\checkmark answer (3)
2.2.2	$\sqrt{12} - \sqrt{147} + 3^{1,5}$	
	$= \sqrt{4 \times 3} - \sqrt{49 \times 3} + 3^{\frac{3}{2}}$ $= 2\sqrt{3} - 7\sqrt{3} + \sqrt{9 \times 3}$	✓ simplifying surds
	$= 2\sqrt{3} - 7\sqrt{3} + 3\sqrt{3} \\ = -2\sqrt{3}$	$✓ 3\sqrt{3}$ ✓ answer (3)
2.3	$\frac{5^{2006} - 5^{2004} + 24}{5^{2004} + 1} = a$	
	$\frac{5^{2004}(5^2-1)+24}{5^{2004}+1} = a$	✓ factorising
	$\frac{5^{2004}(24) + 24}{5^{2004} + 1} = a$	
	$\frac{24(5^{2004}+1)}{5^{2004}+1} = a$	✓ factorising
	a=24	✓ answer (3)
	1	[11]

5 GRADE 11-Marking Guideline

QUESTION 3

4.1	
S	
$ \rangle \rangle R$	
0	
Construction: Draw OS and OT.	\checkmark construction
Proof:	
In $\triangle OSR$ and $\triangle OTR$:	
1. OS = OT [radii]	✓ S/R
2. $OR = OR$ [common]	\checkmark S (OR is common)
3. $\hat{SRO} = T\hat{RO} = 90^{\circ}$ [$\angle s$ on a straight	
$\therefore \Delta OSR \equiv \Delta OTR [90^{\circ}; H; S]$	✓ S/R
$\therefore SR = RT [\equiv \Delta s]$	(5)
4.2 OD \perp AC [line from centre to n	-
$OA^2 = AD^2 + OD^2$ [Pythagoras]	✓ S/R
$=24^2 + 7^2$	
= 625	
OA = 25 mm	✓ length of the radius ✓ S/R
$OB = OA \qquad [radii]$ $\therefore BD = 25 - 7 = 18 \text{ mm}$	✓ S/K ✓ answer
	(5)
	[10]

511	$\hat{\sigma}^{1}$	
5.1.1	$\hat{F} = \frac{1}{2}\hat{GOL}$ [\angle at centre =2× \angle at circumference]	✓ R
	=68°	\checkmark answer (2)
5.1.2	$\hat{F} + \hat{H}_1 = 180^\circ$ [opp. $\angle s$ of cyclic quadrilateral]	✓ R
	$\hat{H}_1 = 180^\circ - 68^\circ$	^
	=112°	\checkmark size of \hat{H}_1
	$\hat{\mathbf{K}} = \hat{\mathbf{H}}_1$ [ext. \angle of cyclic quadrilateral]	✓ R
	=112°	✓ answer
	OR	(4) (4)
	$\hat{H}_2 = \hat{F} = 68^\circ$ [ext. \angle of cyclic quadrilateral]	\checkmark S \checkmark R
	$\hat{K} = 112^{\circ}$ [opp. \angle s of cyclic quadrilateral]	\checkmark S \checkmark R
		(4)
5.2.1	$\hat{\mathbf{C}} = x$ [$\angle s$ in the same segment]	\checkmark S \checkmark R
	$\hat{A}_1 = \hat{C} = x$ [alt. $\angle s$; BA CD]	✓ S/R
	$\hat{D}_2 = \hat{A}_1 = x$ [$\angle s$ in the same segment]	✓ S/R
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{B}} = x$ [tan-chord theorem]	$\checkmark S \checkmark R$ (6)
		(6)
	OR	OR
	$\hat{D}_2 = x$ [alt. $\angle s$; BA CD]	✓ S/R
	$\hat{A}_1 = \hat{D}_2 = x$ [$\angle s$ in the same segment]	\checkmark S \checkmark R
	$\hat{\mathbf{C}} = \hat{\mathbf{B}} = x$ [$\angle s$ in the same segment]	✓ S/R
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{B}} = x$ [tan-chord theorem]	$\checkmark S \checkmark R$
		(6)
5.2.2	$\hat{D}_3 = 90^\circ$ [\angle in a semicircle]	\checkmark S \checkmark R
	$\hat{\mathbf{E}} = 180^{\circ} - (\hat{\mathbf{B}} + \hat{\mathbf{BDE}})$ [sum of $\angle s$ in Δ]	✓ S
	$=180^{\circ} - (x + 90^{\circ} + x)$	
	$=90^{\circ} - 2x$	✓ answer
	-90 - 2x	(4)
	OR	OR
	$\hat{D}_3 = 90^\circ$ [\angle in a semicircle]	\checkmark S \checkmark R
	$\hat{E} + C\hat{D}E = 180^{\circ}$ [co-interior $\angle s$; BA CD]	✓ S
	$\hat{\mathbf{E}} = 180^{\circ} - \mathbf{C}\hat{\mathbf{D}}\mathbf{E}$ $= 180^{\circ} - (x + 90^{\circ} + x)$	
	$= 180^{\circ} - (x + 90^{\circ} + x)^{\circ}$ $= 90^{\circ} - 2x^{\circ}$	
	=90-2x	\checkmark answer (4)

8 GRADE 11-Marking Guideline

$ \begin{array}{c c} & = 180^{\circ} - \left(x + 90^{\circ} + x\right) \\ & = 90^{\circ} - 2x \\ \therefore \hat{A}_{2} = \hat{E} \qquad [both = 90^{\circ} - 2x] \\ \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \\ \hline \mathbf{OR} \\ & \hat{D}_{1} = 180^{\circ} - \left(\hat{D}_{2} + \hat{D}_{3} + \hat{D}_{4}\right) \qquad [\angle s \text{ on a straight line}] \\ & = 180^{\circ} - \left(x + 90^{\circ} + x\right) \\ & = 90^{\circ} - 2x \\ \hat{D}_{1} = \hat{A}_{2} \qquad [tan-chord-theorem] \\ \therefore \hat{A}_{2} = 90^{\circ} - x \\ \therefore \hat{A}_{2} = \hat{E} \qquad [both = 90^{\circ} - 2x] \\ \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \\ \hline \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \\ \hline \end{array} $	5.2.3	$\hat{A}_2 = 180^\circ - (\hat{B} + \hat{D}_3 + \hat{A}_1)$ [sum of $\angle s$ in $\triangle ABD$]	✓ S
$ \begin{array}{c c} \therefore \hat{A}_{2} = \hat{E} & [both = 90^{\circ} - 2x] \\ \therefore AE \text{ is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] & & & & & \\ \hline \mathbf{OR} & & & & & \\ \hat{\mathbf{OR}} & & & & & \\ \hat{\mathbf{D}}_{1} = 180^{\circ} - (\hat{\mathbf{D}}_{2} + \hat{\mathbf{D}}_{3} + \hat{\mathbf{D}}_{4}) & [\angle s \text{ on a straight line}] \\ = 180^{\circ} - (x + 90^{\circ} + x) \\ = 90^{\circ} - 2x \\ \hat{\mathbf{D}}_{1} = \hat{\mathbf{A}}_{2} & [tan-chord-theorem] \\ \therefore \hat{\mathbf{A}}_{2} = 90^{\circ} - x \\ \therefore \hat{\mathbf{A}}_{2} = \hat{\mathbf{E}} & [both = 90^{\circ} - 2x] \\ \therefore AE \text{ is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] & & & & \\ \mathbf{A}_{2} = \hat{\mathbf{E}} & [both = 90^{\circ} - 2x] \\ \therefore AE \text{ is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] & & & & \\ \mathbf{A}_{2} = \hat{\mathbf{E}} & [both = 90^{\circ} - 2x] \\ \hline \mathbf{A}_{2} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{2} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{3} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{4} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_{5} = \hat{\mathbf{E}} & [both = 10^{\circ} - 2x] \\ \hline \mathbf{A}_$		$=180^{\circ} - (x + 90^{\circ} + x)$	
$ \begin{array}{c c} \therefore AE \text{ is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \hline \hline \\ \hline \hline$			
$\begin{bmatrix} \text{converse: tan-chord-theorem} \end{bmatrix} \checkmark \mathbb{R} $ $ \begin{array}{c} \mathbf{OR} \\ \hat{\mathbf{D}}_{1} = 180^{\circ} - (\hat{\mathbf{D}}_{2} + \hat{\mathbf{D}}_{3} + \hat{\mathbf{D}}_{4}) [\angle s \text{ on a straight line}] \\ = 180^{\circ} - (x + 90^{\circ} + x) \\ = 90^{\circ} - 2x \\ \hat{\mathbf{D}}_{1} = \hat{\mathbf{A}}_{2} \qquad [\text{tan-chord-theorem}] \\ \therefore \hat{\mathbf{A}}_{2} = 90^{\circ} - x \\ \therefore \hat{\mathbf{A}}_{2} = \hat{\mathbf{E}} \qquad [\text{both } = 90^{\circ} - 2x] \\ \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [\text{converse: tan-chord-theorem}] \\ \end{array} $ $ \begin{array}{c} \checkmark \mathbb{R} \\ \hat{\mathbf{A}}_{2} = 90^{\circ} - 2x \\ \hat{\mathbf{A}}_{2} = \hat{\mathbf{E}} \\ \text{converse: tan-chord-theorem} \end{bmatrix} \\ \end{array} $		$\therefore \hat{\mathbf{A}}_2 = \hat{\mathbf{E}} \qquad \qquad [both = 90^\circ - 2x]$	$\hat{A}_2 = \hat{E}$
OROR $\hat{D}_1 = 180^\circ - (\hat{D}_2 + \hat{D}_3 + \hat{D}_4)$ [\angle s on a straight line] $= 180^\circ - (x + 90^\circ + x)$ \checkmark S $= 90^\circ - 2x$ $\hat{D}_1 = \hat{A}_2$ $\hat{D}_1 = \hat{A}_2$ [tan-chord-theorem] $\therefore \hat{A}_2 = 90^\circ - x$ $\hat{A}_2 = 90^\circ - 2x$ $\therefore \hat{A}_2 = \hat{E}$ [both $= 90^\circ - 2x$] $\therefore AE is a tangent to the circle through A, D and E\hat{A}_2 = \hat{E}[converse: tan-chord-theorem]\checkmark R$			
$\hat{D}_{1} = 180^{\circ} - (\hat{D}_{2} + \hat{D}_{3} + \hat{D}_{4}) [\angle s \text{ on a straight line}]$ $= 180^{\circ} - (x + 90^{\circ} + x)$ $= 90^{\circ} - 2x$ $\hat{D}_{1} = \hat{A}_{2} \qquad [\text{tan-chord-theorem}]$ $\therefore \hat{A}_{2} = 90^{\circ} - x$ $\therefore \hat{A}_{2} = \hat{E} \qquad [\text{both} = 90^{\circ} - 2x]$ $\therefore AE \text{ is a tangent to the circle through A, D and E}$ $[\text{converse: tan-chord-theorem}]$			(4)
$ \begin{array}{c c} = 180^{\circ} - (x + 90^{\circ} + x) \\ = 90^{\circ} - 2x \\ \hat{D}_{1} = \hat{A}_{2} \qquad [tan-chord-theorem] \\ \therefore \hat{A}_{2} = 90^{\circ} - x \\ \therefore \hat{A}_{2} = \hat{E} \qquad [both = 90^{\circ} - 2x] \\ \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \qquad \qquad$		OR	OR
$ \begin{array}{c} = 90^{\circ} - 2x \\ \hat{D}_{1} = \hat{A}_{2} \qquad [tan-chord-theorem] \\ \therefore \hat{A}_{2} = 90^{\circ} - x \\ \therefore \hat{A}_{2} = \hat{E} \qquad [both = 90^{\circ} - 2x] \\ \therefore \text{ AE is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \qquad \qquad \checkmark \hat{A}_{2} = \hat{E} \\ \hline \checkmark \text{ R} $		$\hat{\mathbf{D}}_1 = 180^\circ - (\hat{\mathbf{D}}_2 + \hat{\mathbf{D}}_3 + \hat{\mathbf{D}}_4) \qquad [\angle s \text{ on a straight line}]$	✓ S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\therefore \hat{A}_2 = \hat{E} \qquad [both = 90^\circ - 2x] \\ \therefore AE \text{ is a tangent to the circle through A, D and E} \\ [converse: tan-chord-theorem] \qquad \qquad \checkmark R$		$\hat{D}_1 = \hat{A}_2$ [tan-chord-theorem]	
$\therefore AE is a tangent to the circle through A, D and E [converse: tan-chord-theorem] \checkmark R$		2	$\hat{A}_2 = 90^\circ - 2x$
[converse: tan-chord-theorem] $\checkmark R$		$\therefore \hat{A}_2 = \hat{E} \qquad [both = 90^\circ - 2x]$	$\hat{A}_2 = \hat{E}$
(4)			
[20]			

TOTAL MARKS: 75