SECTION A

QUESTION 1

Given	the points	A(2:7)	and	B(-8;-3)
G1, C11	the points	 (-, , ,		2 (0,0)

Determine the length of line AB , leaving answer in surd form.	
Find the gradient of AB .	
through the point $(1; -2)$. Find the value of k if the points A , B and $D(6; k)$ are collinear. (lie on the same	2
through the point $(1; -2)$. Find the value of k if the points A , B and $D(6; k)$ are collinear. (lie on the same	2
Determine the equation of the line which is parallel to AB , and which passes through the point $(1; -2)$. Find the value of k if the points A , B and $D(6; k)$ are collinear. (lie on the same straight line.)	2

Refer to the figure. R(-1;1), S(5;3) and W(7;-5) are points in the Cartesian plane. RT = TW and $T\hat{S}P = \beta$.

2.1	Show that the	co-ordinates of	T	are ($(3 \cdot -2)$	
4.1	Show that the	co-ordinates or	1	are ((3, -2)	

(2)

2.2 Find the equation of the line *ST*.

2.3 Determine whether or not $\hat{RSW} = 90^{\circ}$. Explain

QUESTION	2 contd
-----------------	---------

4	Find the size of θ , the inclination of ST .	
5	Hence, calculate the value of β . ($T\hat{S}P$)	(
		(
5	Calculate the co-ordinates of a point $D(x; y)$, if $RSWD$ is a parallelogram.	
		(
JES	STION 3	(
ven	the points $C(-11; -4)$, $D(-5; 3)$ and $E(1; k)$.	
ılcul	ate the value(s) of k if $DE = 3CD$.	
		(

SECTION B

QUESTION 4

Giving reasons, find the value of x in each of the following, where O is circle centre:

4.1

4.2

(2)

4.3

(4)

4.4 TR is a tangent and $Q\hat{W}R = 50^{\circ}$.

In the figure below, O is the centre of the circle. RT = TS = 4cm and YT = 1cm.

Find the length of the radius of the circle.

In the diagram, O is the centre of the circle and $\hat{S}_1 = y$

If $y =$	44° , determine, with reasons, the size of the followin	g angles:
If $y =$ (a)	44° , determine, with reasons, the size of the followin \hat{R}	g angles:
		g angles:
		g angles:
		g angles:

In the figure below, BW//AC, AB = BT and AT = AC.

DCW is a tangent to the circle at C and BTW is a straight line.

7.1 If $\hat{C}_1 = x$, name three other angles each equal to x. (reasons not required)

(3)

7.2 Express \hat{ABT} in terms of x.

(2)

7.3 If $\hat{C}_3 = k$, give, with reasons, two other angles each equal to k.

(4)

You may require the following FORMULAE.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{Midpt} = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$\tan \theta = m \qquad m = \frac{y_1 - y_2}{x_1 - x_2}$$

$$y = mx + c$$

$$m(x_2 - x_1) = y_2 - y_1$$