

Senior College

FORM 4 (IEB)

Mathematics Paper 2

June 2015

Examiner: Mr R STEENHUISEN	Moderator: Mrs A GUNNING
TIME: 1 ½ hours	TOTAL: 80
NAME:	

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTIONS.

- This question paper consists of 9 pages. Please check that your question paper is complete.
- Read and answer all questions carefully.
- It is in your own interest to write legibly and to present your work neatly.
- Number your answers exactly as the questions are numbered.
- All necessary working which you have used in determining your answers must be clearly shown.
- Approved non-programmable calculators may be used except where otherwise stated. Where necessary give answers correct to 2 decimal places.
- Diagrams have not necessarily been drawn to scale.
- A list of formulae have been provided on Page 1.
- ANSWER ALL QUESTIONS ON THE QUESTION PAPER.

Given the points A(2;7) and B(-8;-3)

1..1 Find the co-ordinates of the midpoint of AB. $\frac{\text{Midpoint}}{\text{Midpoint}} = \left(\frac{2-8}{2}, \frac{7-3}{2}\right) = \left(-3; 2\right)$

(2)

1.2 Determine the length of line AB, leaving answer in surd form.

 $AB = \sqrt{(2+8)^2 + (4+3)^2}$ $= \sqrt{200}$ oR 10 $\sqrt{2}$

1.3 Find the gradient of AB. $M_{AB} = \frac{7+3}{2+8} = \frac{10}{10} = 1$

(2)

Determine the equation of the line which is parallel to AB, and which passes through the point (1;-2).

 $M = 1 \qquad y = \infty + c$

 $-2 = 1 + c \qquad \text{sub} (1; -2)$ c = -3 $u = \infty - 3$

 $\underbrace{9 = x - 3} \tag{4}$

Find the value of k if the points A, B and D(6; k) are collinear. (lie on the same straight line.)

 $\frac{M_{AB} = 1}{\frac{K-7}{4}} = 1$ $\frac{K-7}{4} = 1$

K-7 = 4 K = 11 V

Refer to the figure. R(-1;1), S(5;3) and W(7;-5) are points in the Cartesian plane. RT = TW and $T\hat{S}P = \beta$.

2.1 Show that the co-ordinates of T are (3; -2).

T
$$\left(-\frac{1+7}{2}; \frac{1-5}{2}\right) = \left(3; -2\right)$$

(2)

2.2 Find the equation of the line ST.

2.3 Determine whether or not $\hat{RSW} = 90^{\circ}$. Explain

$$M_{RS} = \frac{3-1}{5+1} = \frac{1}{3}$$
 $M_{SW} = \frac{3+5}{5-7} = -4$
 $M_{RS} \times M_{SW} \neq -1$
 $M_{RS} \times M_{SW} \neq -1$

Find the size of θ , the inclination of ST. 2.4

the size of
$$\theta$$
, the inclination of ST .

 $M_{ST} = \frac{5}{2}$
 $\tan \theta = \frac{5}{2}$
 $\theta = 68, 2^{\circ}$

(2)

2.5 Hence, calculate the value of β . ($T\hat{S}P$)

Calculate the co-ordinates of a point D(x; y), if RSWD is a parallelogram. 2.6

Calculate the co-ordinates of a point
$$D(x; y)$$
, if $RSWD$ is a parallelogram.

 $\frac{x+5}{2} = 3$
 $\frac{y+3}{2} = -2$

FOR ANSWI

= | (DIAGS OF PARM BISECT (4)

QUESTION 3

Given the points C(-11; -4), D(-5; 3) and E(1; k).

Calculate the value(s) of k if DE = 3CD.

$$DE^{2} = 9 CD^{2}$$

$$\sqrt{M} (1+5)^{2} + (k-3)^{2} = 9 [(-11+5)^{2} + (-4-3)^{2}]$$

$$36 + k^{2} - 6k + 9 = 765$$

$$K^2 - 6K - 720 = 0$$

(K + 24)(K - 30) = 0(6)

K = -24 or K = 30

SECTION B

QUESTION 4

Giving reasons, find the value of x in each of the following, where O is circle centre:

4.1

x = 51° (Lat centre x2 Lat circumf.)

4.2

 $\hat{D} = 90^{\circ} \left(L \text{ in Semic.} \right)$

 $3\infty = 54^{\circ}$ (sum Ls of Δ)

oc = 18° ~

(2)

4.3

 $3x + 18 + 6x - 18^{\circ} = 180^{\circ}$ (opp Ls cyclic quad)

3c = 26°

(4)

4.4 TR is a tangent and $Q\hat{W}R = 50^{\circ}$.

P = 50° (tang. chord th)

.. QOW = 100° (Lat centre x2 Lat circumf)

$$2x = 80^{\circ} / (sum Ls \Delta ; isos \Delta)$$

 $x = 40^{\circ}$

In the figure below, O is the centre of the circle. RT = TS = 4cm and YT = 1cm.

Find the length of the radius of the circle.

Let
$$oS = x$$
 (radius) $order = 90^\circ$ (midpt ch th)
 $order = x - 1$

In
$$\triangle$$
 ors: $os^2 = ot^2 + ts^2 (Pythag)$

$$x^2 = (x-1)^2 + 16$$

$$x^2 = x^2 - 2x + 17$$

$$2x = 17$$

$$x = \frac{17}{2} \checkmark \tag{6}$$

In the diagram, O is the centre of the circle and $\hat{S}_1 = y$

Name, with reasons, three other angles each equal to y.

$$\frac{\hat{Q}_{1} = y \quad (Ls \text{ in } Same \text{ Segm})}{\hat{T}_{1} = y \quad (isos \Delta ; \text{ radii})}$$

$$\hat{P} = y \quad (isos \Delta ; \text{ radii})$$

(6)

6.2 If $y = 44^{\circ}$, determine, with reasons, the size of the following angles:

(a)
$$\hat{R}$$
 $\hat{T}_1 = y = 44^{\circ}$

$$\therefore \hat{R} = 136 \text{ (opp 4s cyclic quad)} \text{ }$$

(b)
$$\hat{O}_1$$

$$\hat{O}_1 = 2y \left(\text{L at centre } \times 2 \text{ L at circumf.} \right)$$

(3)

(2)

QUESTION 7

In the figure below, BW//AC, AB = BT and AT = AC.

DCW is a tangent to the circle at C and BTW is a straight line.

7.1 If $\hat{C}_1 = x$, name three other angles each equal to x. (reasons not required)

7.2 Express $A\hat{B}T$ in terms of x.

7.3 If $\hat{C}_3 = k$, give, with reasons, two other angles each equal to k.

$$\hat{A}_{1} = K \left(\text{tang ch th} \right)$$

$$\hat{T}_{1} = K \left(\text{alt } \Delta s = Ac \mid \mid BT \right)$$
of
$$\hat{A}_{2} = K \left(\text{isos } \Delta \right)$$

$$\frac{TOTAL SECTION B : 40}{40}$$