

GAUTENG DEPARTMENT OF EDUCATION

PROVINCIAL EXAMINATION

NOVEMBER 2021

GRADE 9

MATHEMATICS (PAPER 2)

NAME OF LEARNER:

GRADE:

TIME: 1¹/₂ hours

MARKS: 75

14 pages

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions in the spaces provided on the question paper.
- 2. Question 1 consists of 5 multiple choice questions. Circle the letter next to the correct answer.
- 3. Answer questions 2 to 5 in the spaces provided.
- 4. Clearly show all calculations, diagrams and graphs that have been used in determining your answers. Answers only will not necessarily be awarded full marks.
- 5. Diagrams are not necessarily drawn to scale. Reasons MUST always be given for statements made when answering geometry questions.
- 6. The teacher will lead you through the practice question before you start the test.
- 7. An approved scientific calculator (non-programmable and non-graphical) may be used, unless otherwise stated.
- 8. Write neatly and legibly.

PRACTICE QUESTION

Circle the letter next to the correct answer.

1. Complete: \hat{A} is an obtuse angle, because ...

A
$$0^{\circ} < \hat{A} < 90^{\circ}$$

- B $180^{\circ} < \hat{A} < 360^{\circ}$
- C $90^{\circ} < \hat{A} < 180^{\circ}$
- D $\hat{A} = 180^{\circ}$

You have done it correctly if you circled C.

MATHEMAT	TICS	3
(Paper 2)	GRADE 9	C

Circle the letter next to the correct answer.

1.1

Complete: The size of $x = \dots$

- A 54°
- B 36°
- C 136°
- D 90°

1.2 In $\triangle ABC$, AB = BC and $\hat{B} = 97^{\circ}$ Complete: $\triangle ABC$ is ...

- A an acute angled isosceles triangle.
- B an equilateral triangle.
- C an obtuse angled isosceles triangle.
- D a scalene triangle.
- 1.3 Given: $\hat{A} = 36^{\circ}$ and $\hat{K} = 54^{\circ}$ Complete: \hat{K} is ...
 - A the supplement of \hat{A} .
 - B a corresponding angle of \hat{A} .
 - C the complement of \hat{A} .
 - D a co-interior angle of \hat{A} . (1)

(1)

(1)

Given: Three quarters of a circle with radius of 6 cm. 1.4

The circumference of the circle is ...

A
$$\frac{3 \times \pi \times (6 \ cm)^2}{4}$$

B
$$\frac{4 \times \pi \times 12 \ cm}{3}$$

C
$$\frac{4 \times \pi \times (6 \text{ cm})^2}{3}$$

D
$$3 \times \pi \times 12 \text{ cm}$$

4

1.5 The co-ordinates of the image of A (2; -3) under the translation

$$(x; y) \rightarrow (x; y - 3)$$
 is ...

$$\begin{array}{ll} A & (-1;0) \\ B & (2;0) \end{array}$$

C
$$(2; -6)$$

D
$$(-1; -6)$$
 (1)

[5]

(1)

2.1

Fill in the missing information to complete the statement or reason.

	Statement	Reason
2.1.1	$\hat{B}_1 = B\hat{C}D$	
2.1.2	$\hat{A}_1 + \hat{A}_2 + \hat{B}_2 = _$	co-int. $\angle s$ and AD 11 BC
2.1.3	$\hat{B}_1 = $	ext. \angle of \triangle
2.1.4	$\hat{A}_2 = \hat{C}_2$	
2.1.5	$\widehat{D}_2 = \widehat{D}_4$	
2.1.6	$\widehat{D}_2 = \widehat{C}_1 + \widehat{C}_2$	
2.1.7	$\hat{C}_1 + \hat{C}_2 + \hat{C}_3 = 180^{\circ}$	
2.1.8	$\hat{A}_1 + \hat{B}_2 + \hat{C}_2 = _$	sum int. \angle of Δ
2.1.9	$\widehat{D}_2 = $	alt. $\angle s$ and AB ll DC
2.1.10	$\hat{A}_1 = \hat{C}_1$	

2.2

Calculate, with reasons, the size of x.

Statement	Reason

(3)

(10)

2.3 $\triangle ABC$ with AB extended to D and CB extended to G, GF intersect AD at E, BÂC = 54°, ABC = 63°, DÊF = x and BĜE = y.

2.3.1 Calculate, with reasons, the value of x.

Statement	Reason

(3)

2.3.2 Calculate, with reasons, the value of *y*.

Statement	Reason

(3) [**19**]

3.1 Given: AB || DC, BC = FC, EF = BF and $\hat{C} = 40^{\circ}$

Complete this table in order to calculate, with reasons the size of \hat{F}_2

Statement	Reason
Ĉ =	Given
B ₂ =	∠s opp. equal sides
$2\hat{F}_3 + 40^\circ = 180^\circ$	
$2\hat{F}_3 = $	
$\therefore \hat{F}_3 =$	
But $\hat{F}_3 =$	alt. ∠s and AB∥DC
and $\hat{B}_1 =$	
$\widehat{F}_2 + \widehat{B}_1 + \widehat{E}_2 = 180^\circ$	
$\therefore \hat{F}_2 = $	

(8)

3.2 Given AB = AD and BC = DC.

- 3.2.1 What kind of quadrilateral is ABCD? Name one property to justify your answer.
- 3.2.2 Prove that $\triangle ABC \equiv \triangle ADC$.

Statement	Reason
AB =	
BC =	
AC =	
$\therefore \Delta ABC \equiv$	

(4)

(2)

3.2.3 Hence prove that $\hat{C}_2 = \hat{C}_3$.

Statement	Reason
Ĉ ₂ =	ext. \angle of \triangle
$\hat{\mathcal{C}}_3 =$	ext. \angle of \triangle
but $\hat{A}_1 =$	$\angle s \text{ of } \equiv \Delta s$
and $\hat{B} =$	$\angle s \text{ of } \equiv \Delta s$
$\therefore \hat{A}_1 + \hat{B} = \underline{\qquad}$	
$\therefore \hat{\mathcal{C}}_2 =$	

(4)

3.3 Given: $\triangle DEF$ with $DE = DF = 20 \ cm$, $\hat{E} = \hat{F} = 66^{\circ}$ and $\triangle XYZ$ with $XY = XZ = 8 \ cm$ and $\hat{X} = 48^{\circ}$

3.3.1 Write down TWO conditions for triangles to be similar.

(2)

3.3.2 Hence, prove that $\Delta DEF \parallel \Delta XYZ$

Statement	Reason
Ŷ =	$\angle s$ opp. equal sides
$2\hat{Y} =$	Sum int. $\angle s$ of Δ
$\therefore \hat{Y} =$	
In ΔDEF and ΔXYZ :	
$\widehat{D} = $,	
$\hat{E} = $,	By calculation
$\hat{F} =$	
∴ ΔDEF	

(5) [**25**]

4.1 The diagram below shows the translation of objects **A** and **B** in the Cartesian plane.

(2)

4.1.3 Write down the co-ordinates of the image of **B**.

$$B'(\underline{\ ;} \underline{\ }) \tag{1}$$

4.1.4 Describe in your own words, the transformation of **B** to its image B'.

QUESTION 5

- 5.1 Δ TAD is a right-angled triangle attached to rectangle ABCD.
 - AB = 20 cm, BC = 12 cm and TC = 25 cm.

5.1.1 Complete the table below in order to calculate the length of AT.

Statement	Reason
In Δ TAD: AD =	
TD =	
AT ² =	Pythagoras
AT =	

(6)

(2) [6]

n the figure below, the square is 4	ne square has all its vertice 00 cm ² .	s on the circumference of	the circle. The
	\square		
Seloulate is the area of	f the circle $U_{\text{so}} = 3.14$		
	The choice. Use $h = 3,14$.		

5.3 Below is a rectangular prism with length 35 mm, breadth 20 mm and height 55 mm.

Calculate the total surface area of the rectangular prism.

5.4 Calculate the volume, correct to 1 decimal place, of a cube with sides 13,5 cm.

TOTAL: 75

(3)