

JUNE EXAMINATIONS

GRADE 9

MATHEMATICS

JUNE 2016

EXAMINER: P SNYMAN MARKS: 120

MODERATOR: D GADEMAN TIME:2 HOURS

This question paper consists of 7 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Write your exam number and teacher's name on your answer booklet.
- 2. This question paper consists of 7 questions.
- 3. Answer ALL the questions.
- 4. Clearly show ALL calculations, diagrams, graphs et cetera that you have used in determining your answers.
- 5. Answers only will not necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round answers off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Number the answers correctly according to the numbering system used in this question paper.
- 10. Write legibly and present your work neatly.

$x^2 + y^2 = r^2$ A = $\frac{1}{2}$ (sum //side) ×h	$A = b \times h$	$A = l \times b$
---	------------------	------------------

QUESTION 1

Simplify the following and leave your answers with positive exponents where applicable.

1.1
$$2a^2 \times 4a^4$$
 (2)

1.2
$$\frac{3^9}{3^5}$$
 (2)

1.3
$$\frac{5a^2b}{3ab} \div \frac{20a^3b}{27}$$
 (3)

$$1.4 2x^{-2} \times \frac{x^4}{4} (2)$$

1.5
$$2y^0$$
 (1) [10]

QUESTION 2

Consider the following expression:

$$-3x^5 + \frac{x}{2} - x^2 + 2$$

- 2.1 Classify the polynomial (1)
- 2.2 Give the constant term. (1)
- 2.3 Give the degree of the polynomial (1)
- 2.4 Write down the co-efficient of x (1)
- 2.5 Arrange the polynomial in descending powers of x (1)
- 2.6 Calculate the value of if $-3x^5 + \frac{x}{2} x^2 + 2$ when x = 2 (2)
- 2.7 Subtract $x^2 2x + 2$ from $-3x^2 + 2 + 9x + 2x^3$ (3)

[10]

QUESTION 3

3.1 Simplify:

$$3.1.1 \quad xy^2 - 2x^2y - 7xy^2 + 6x^2y - 2xy^2 \tag{2}$$

$$3.1.2 \quad 3a^2b^2c(3a^2-4b-c) \tag{3}$$

$$3.1.3 \quad (2x-3)(x+1) \tag{3}$$

$$3.1.4 \quad (x-4)^2 - x(x-3) \tag{3}$$

$$3.1.5 \quad \left(\frac{x}{2} + \frac{y}{4}\right)^2 \tag{3}$$

$$3.1.6 \quad (-xy^2)^3 \tag{3}$$

$$3.1.7 \quad \sqrt{\frac{36(xy^2)^3}{x}} \tag{3}$$

[20]

3.2 Factorise fully:

$$3.2.1 \quad 8t^2 - 4t \tag{2}$$

$$3.2.2 \quad 4a^2 - 25 \tag{2}$$

$$3.2.3 \quad x^2 - 5x + 6 \tag{2}$$

$$3.2.4 \quad 2x^4 - 2$$
 (3)

$$3.2.5 x^2 + 81 (1)$$

[10]

QUESTION 4

4.1 Simplify:

$$4.1.1 \quad \frac{x-3}{2x} \div \frac{x^2 - 9}{2x} \tag{3}$$

4.1.2
$$\frac{2x}{y} \times \frac{3y}{4}$$
 (2)

$$4.1.3 \quad \frac{-x^3 + 2x}{x} - \frac{15x^2 - 5}{5} \tag{5}$$

[10]

QUESTION 5

5.1 Solve for x:

$$5.1.1 \quad 2x - 5 = 5x + 16 \tag{2}$$

$$5.1.2 \quad x - \frac{x - 1}{2} = 3 \tag{3}$$

$$5.1.3 \quad x^2 - 1 = 0 \tag{3}$$

$$5.1.4 \quad 3x - 2 \ge 4x - 6 \tag{2}$$

[10] P.T.O.

QUESTION 6

6.1 Find the values of the variables in these diagrams with reasons:

6.2

(10)

6.3 Calculate the values of x and y if $\hat{B}_2 = x$, $\hat{D}_2 = y$, $\hat{D}_1 = 44^{\circ}$, $\hat{C}_1 = 75^{\circ}$ and AB / /BC.

6.4 In the diagram below CS / /HN, $\hat{A}_2 = 70^{\circ}$, AE = AW, $\hat{A}_1 = x$. Determine the value of x.

(6)

(5)

6.5

In the figure below \widehat{D}_1 = \widehat{B}_2 = 90° and AD = BC.

Prove that $\triangle ABD \equiv \triangle CDB$.

(5)

- 6.6 ABCD is a parallelogram.
- 6.6.1 Determine the values of x, y and z.

(8)

- 6.7 Which of the following quadrilalaterals are not parallelograms?
- 6.7.1 rhombus
- 6.7.2 rectangle
- 6.7.3 square
- 6.7.4 trapezium
- 6.7.5 kite

(2)

[39]

QUESTION 7

- 7.1 If BC = 60mm, AB = 50mm and BE = 90mm, determine:
- 7.1.1 the perimeter of trapezium ABED,

(5) (3)

7.1.2 the area of the trapezium.

(2)

7.1.3 the area of parallelogram ABCD.

[11]

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_a = a + (n-1)d \qquad S_a = \frac{n}{2}(2a + (n-1)d)$$

$$T_a = ar^{n-1} \qquad S_a = \frac{a(r^n - 1)}{r - 1}; r \neq 1 \qquad S_a = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^n]}{i}$$

$$f'(x) = \lim_{b \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$\ln \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc.\cos A \qquad \text{Area } \Delta ABC = \frac{1}{2} \text{ ab. sin } C$$

$$\sin(\alpha + \beta) = \sin\alpha.\cos\beta + \cos\alpha.\sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha.\cos\beta - \cos\alpha.\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \cos\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \cos\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \cos\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta$$

$$\cos(\alpha - \beta) = \cos\alpha.\cos\beta$$

$$\sin(\alpha - \beta) = \cos\alpha.\cos\beta$$

$$\cos(\alpha - \beta)$$

NAME:	
TEACHER:	

DIAGRAM SHEET

QUESTION (...)