

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION NOVEMBER 2021

GRADE 9

MATHEMATICS (PAPER 2)

NAME OF LEARNER:		
GRADE:		
TIME: 1½ hours		
MARKS: 75		

14 pages

MATHEMATICS		2
(Paper 2)	GRADE 9	1

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions in the spaces provided on the question paper.
- 2. Question 1 consists of 5 multiple choice questions. Circle the letter next to the correct answer.
- 3. Answer questions 2 to 5 in the spaces provided.
- 4. Clearly show all calculations, diagrams and graphs that have been used in determining your answers. Answers only will not necessarily be awarded full marks.
- 5. Diagrams are not necessarily drawn to scale. Reasons MUST always be given for statements made when answering geometry questions.
- 6. The teacher will lead you through the practice question before you start the test.
- 7. An approved scientific calculator (non-programmable and non-graphical) may be used, unless otherwise stated.
- 8. Write neatly and legibly.

PRACTICE QUESTION

Circle the letter next to the correct answer.

- 1. Complete: \hat{A} is an obtuse angle, because ...
 - A $0^{\circ} < \hat{A} < 90^{\circ}$
 - B $180^{\circ} < \hat{A} < 360^{\circ}$
 - \bigcirc 90° < \hat{A} < 180°
 - D $\hat{A} = 180^{\circ}$

You have done it correctly if you circled C.

MATHEMATICS		3
(Paper 2)	GRADE 9	

QUESTION 1

Circle the letter next to the correct answer.

1.1

Complete: The size of x = ...

A 54°

B 36°

C 136°

D 90° (1)

In ΔABC, AB = BC and $\hat{B} = 97^{\circ}$ Complete: ΔABC is ...

A an acute angled isosceles triangle.

B an equilateral triangle.

C an obtuse angled isosceles triangle.

D a scalene triangle. (1)

1.3 Given: $\hat{A} = 36^{\circ}$ and $\hat{K} = 54^{\circ}$ Complete: \hat{K} is ...

A the supplement of \hat{A} .

B a corresponding angle of \hat{A} .

C the complement of Â.

D a co-interior angle of \hat{A} . (1)

M	MATHEMATICS		4
(P :	aper 2)	GRADE 9	•

1.4 Given: Three quarters of a circle with radius of 6 cm.

The circumference of the circle is ...

A
$$3 \times \pi \times (6 \text{ cm})^2$$
 4

$$B \qquad \frac{4 \times \pi \times 12 \ cm}{3}$$

$$C \qquad \frac{4 \times \pi \times (6 \ cm)^2}{3}$$

$$D \qquad \frac{3 \times \pi \times 12 \ cm}{4}$$

1.5 The co-ordinates of the image of A (2; -3) under the translation

$$(x; y) \to (x; y - 3) \text{ is } \dots$$

A
$$(-1;0)$$

C
$$(2; -6)$$

D
$$(-1; -6)$$
 (1) [5]

(1)

MATHEMA'	ГІСS	5
(Paper 2)	GRADE 9	

QUESTION 2

2.1

Fill in the missing information to complete the statement or reason.

	Statement	Reason
2.1.1	$\hat{B}_1 = B\hat{C}D$	
2.1.2	$\hat{A}_1 + \hat{A}_2 + \hat{B}_2 = \underline{\hspace{1cm}}$	co-int. ∠s and AD ll BC
2.1.3	$\hat{B}_1 = \underline{\hspace{1cm}}$	ext. ∠ of ∆
	$\hat{A}_2 = \hat{\mathcal{C}}_2$	
2.1.5	$\widehat{D}_2 = \widehat{D}_4$	
2.1.6	$\widehat{D}_2 = \widehat{C}_1 + \widehat{C}_2$	
2.1.7	$\hat{\mathcal{C}}_1 + \hat{\mathcal{C}}_2 + \hat{\mathcal{C}}_3 = 180^{\circ}$	
2.1.8	$\hat{A}_1 + \hat{B}_2 + \hat{C}_2 = \underline{\hspace{1cm}}$	sum int. \angle of Δ
2.1.9	$\widehat{D}_2 = \underline{\hspace{1cm}}$	alt. ∠s and AB ll DC
2.1.10	$\hat{A}_1 = \hat{\mathcal{C}}_1$	

2.2

Calculate, with reasons, the size of x.

Statement	Reason

(10)

MATHEMATICS		6
(Paper 2)	GRADE 9	Ü

2.3 \triangle ABC with AB extended to D and CB extended to G, GF intersect AD at E, $\widehat{BAC} = 54^{\circ}$, $\widehat{ABC} = 63^{\circ}$, $\widehat{DEF} = x$ and $\widehat{BGE} = y$.

2.3.1 Calculate, with reasons, the value of x.

Statement	Reason

(3)

2.3.2 Calculate, with reasons, the value of y.

Statement	Reason

(3)

[19]

MATHEMATICS		7
(Paper 2)	GRADE 9	,

QUESTION 3

3.1 Given: AB||DC, BC = FC, EF = BF and $\hat{C} = 40^{\circ}$

Complete this table in order to calculate, with reasons the size of \hat{F}_2

Statement	Reason
Ĉ =	Given
$\widehat{B}_2 = \underline{\hspace{1cm}}$	∠s opp. equal sides
$2\hat{F}_3 + 40^\circ = 180^\circ$	
$2\hat{F}_3 =$	
$\therefore \hat{\mathbf{F}}_3 = \underline{\hspace{1cm}}$	
But F ₃ =	alt. ∠s and AB∥DC
and $\widehat{B}_1 = \underline{\hspace{1cm}}$	
$\widehat{F}_2 + \widehat{B}_1 + \widehat{E}_2 = 180^{\circ}$	
$\therefore \hat{F}_2 = \underline{\hspace{1cm}}$	

(8)

MATHEMA	TICS	8
(Paper 2)	GRADE 9	· ·

3.2 Given AB = AD and BC = DC.

3.2.1 What kind of quadrilateral is ABCD? Name one property to justify your answer.

	(2)

3.2.2 Prove that $\triangle ABC \equiv \triangle ADC$.

Statement	Reason
AB =	
BC =	
AC =	
∴ ΔABC ≡	

(4)

MATHEMA	TICS	9
(Paper 2)	GRADE 9	

3.2.3 Hence prove that $\hat{C}_2 = \hat{C}_3$.

Statement	Reason
$\hat{\mathcal{C}}_2 =$	ext. ∠ of ∆
$\hat{C}_3 =$	ext. ∠ of ∆
but $\hat{A}_1 =$	$\angle s \text{ of } \equiv \Delta s$
and $\hat{B} =$	$\angle s \text{ of } \equiv \Delta s$
$\therefore \hat{A}_1 + \hat{B} = \underline{\hspace{1cm}}$	
$\therefore \hat{\mathcal{C}}_2 = \underline{\hspace{1cm}}$	

(4)

Given: $\triangle DEF$ with DE = DF = 20 cm, $\hat{E} = \hat{F} = 66^{\circ}$ and $\triangle XYZ$ with XY = XZ = 8 cm and $\hat{X} = 48^{\circ}$

3.3.1 Write down TWO conditions for triangles to be similar.

(2)

MATHEMAT	ΓICS	10
(Paper 2)	GRADE 9	10

3.3.2 Hence, prove that $\Delta DEF \parallel \Delta XYZ$

Statement	Reason
Ŷ =	∠s opp. equal sides
$2\hat{Y} = \underline{\hspace{1cm}}$	Sum int. ∠s of Δ
$\therefore \hat{Y} = \underline{\hspace{1cm}}$	
In ΔDEF and ΔXYZ:	
$\widehat{D} = \underline{\hspace{1cm}},$	
$\hat{E} = \underline{\hspace{1cm}},$	By calculation
<i>Ê</i> =	
∴ ΔDEF	

(5) [**25**]

MATHEMAT	ΓICS	11
(Paper 2)	GRADE 9	

QUESTION 4

4.1 The diagram below shows the translation of objects **A** and **B** in the Cartesian plane.

4.1.1 Write down the co-ordinates of object **A**.

$$A(x;y) = (\underline{};\underline{}) \tag{1}$$

4.1.2 Describe, in your own words, the translation of object A to its image A'.

(2)

MATHEMATICS		12
(Paper 2)	GRADE 9	

4.1.3 Write down the co-ordinates of the image of **B**.

$$B'\left(\underline{};\underline{}\right) \tag{1}$$

4.1.4 Describe in your own words, the transformation of **B** to its image B'.

(2)

[6]

QUESTION 5

 Δ TAD is a right-angled triangle attached to rectangle ABCD.

AB = 20 cm, BC = 12 cm and TC = 25 cm.

5.1.1 Complete the table below in order to calculate the length of AT.

Statement	Reason
In ΔTAD: AD =	
TD =	
$AT^2 =$	Pythagoras
AT =	

(6)

MATHEMA	TICS	13
(Paper 2)	GRADE 9	10

5.1.2	Hence, calculate the perimeter of ABCDT.
In the f area of	Figure below, the square has all its vertices on the circumference of the circle. The the square is 400 cm ² .
Calcula	ate is the area of the circle. Use $\pi = 3,14$.
_	

5.3 Below is a rectangular prism with length 35 mm, breadth 20 mm and height 55 mm.

alculate the volume, co	rrect to 1 decimal 1	place, of a cube with	n sides 13,5 cm.	

[20]

75

TOTAL:

5.4

END